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Abstract

In this paper we define Harbater-Mumford subvarieties, which are special kinds of closed subvarieties of Hurwitz
moduli spaces obtained by fixing some of the branch points. We show that, for many finite groups, finding geomet-
rically irreducible HM-subvarieties defined over Q is always possible. This provides information on the arithmetic of
Hurwitz spaces and applies in particular to the regular inverse Galois problem with (almost all) fixed branch points.
Profinite versions of our results can also be stated, providing new tools to study the geometry of Modular Towers
and the regular inverse Galois problem for profinite groups.

2000 Mathematic Subject Classification. Primary 12F12, 14G32, 20E45; Secondary 14H30, 20E22.

Introduction

The regular inverse Galois problem over some field k, (RIGP/k), essentially reduces to finding k-
rational points on Hurwitz moduli spaces of covers [FV91]. In this context, two main methods can be
distinguished: on the one hand, genus 0 methods [M89] which may provide Q or Qab-rational points
on usually low-dimensional Hurwitz spaces and, on the other hand, large field methods [DF94], [D95],
[Des95]1, which combine irreducibility Conway and Parker type results [FV91], realization results over
local fields [H03], [DF94] and the local-global principle for varieties [Mo89], [P96] to provide QΣ2-
rational points. Our main theorem (theorem 2.2) conjoins these two aspects: it is, as Conway and
Parker’s theorem, a global structure result about high-dimensional Hurwitz spaces but, as genus 0
methods, it deals with low-dimensional closed subvarieties (of those high-dimensional Hurwitz spaces)
obtained by specializing most of the branch points.

The starting point are special components of Hurwitz moduli spaces of covers introduced by M.
Fried [F95] - the Harbater-Mumford components (cf. §2.1). We consider the closed subvarieties - we
call HM-subvarieties - of these HM-components obtained by specializing most of the branch points;
our main result is a general criterion to ensure they are geometrically irreducible. If for instance G
is any group verifying the assumptions of theorem 1 below, our criterion produces infinitely many
Hurwitz spaces carrying geometrically irreducible HM-curves, defined over the same field as the whole
Hurwitz space, and lying in the sublocus corresponding to covers with all their branch points but one
fixed. In general, ”all their branch points but one” should be replaced by ”all their branch points but
r(G)” for some integer r(G) depending only on the finite group G in question.

One motivation for this work was to gain more information about the branch point divisor of
covers defined over large fields. Indeed, when applying the local-global principle to solve for instance
(RIGP/Qtr), this information is entirely lost. Showing that any finite groupG can be regularly realized
over Qtr with a Q-rational branch point divisor would be a significant step towards the (RIGP/Q): as
explained in [D92], the monodromy of such a cover and its conjugates obeys strong group-theoretical
constraints. Also, showing all the groups Gn of a projective system (Gn+1 ։ Gn)n≥0 can be regularly
realized over a large field k with the same branch point divisor t is a missing step to investigate the
(RIGP/k) for profinite groups; this is the underlying idea of works like [DDes04]. Our result enables

1See also works of Pop et al who have developped a parallel approach based on common principles but not using
Hurwitz spaces [P96], [H03], [V99].

2Given a global field k and a finite set Σ of places of k, we always denote by kΣ the maximal algebraic extension of
k (in a fixed separable closure of k) which is totally split at each place P ∈ Σ.
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us to handle the derived problem - we denote by (RIGP/t2 ⊂ t) - where the subset t2 ⊂ t is fixed and
its complement, t1 is allowed to vary (the cardinality |t1| of t1 corresponding to the dimension of the
HM-subvarieties we consider). We are particularly interested in the case when t2 is defined over Q and
|t1| is as small as possible. The first and most difficult step, which is to ensure the HM-subvarieties
are geometrically irreducible, is given by our criterion. The second one consists in showing these
HM-subvarieties can be built in such a way they carry real or p-adic points; this requires a careful use
of recent results from [DE03] about the existence of p-adic points on HM-components. We can then
apply the usual local-global machinery to obtain results like

Theorem 1 Let G be a finite group containing two conjugacy classes A,B such that G =< A >=<
B > and G =< a, b > for any a ∈ A, b ∈ B. Let o(A) denote the order of the elements in A and write

kA := Q(e
2πi

o(A) ). Then, for any finite set Σ of non archimedean places of kA of residue characteristic
not dividing |G| there exists a Q-rational divisor tΣ and G-covers (f, α) defined over kΣ

A with group G
and branch point divisor tf = tf,1 + tΣ where |tf,1| = 1.

As another application, we obtain new regular realizations of some prodihedral groups over Qtr (cf.
also [C04a]).

Moreover, our irreducibility criterion behaves well with Frattini extensions. This allows us to
investigate the arithmetic of Fried’s modular towers [F95] (section 4.1.2) and tackle the related
(RIGP/t2 ⊂ t) for profinite groups like the universal p-Frattini cover pG̃ of a finite p-perfect group
G (for some prime p dividing |G|). For instance, with the notation and hypotheses of theorem 1 but
assuming in addition that G is p-perfect and A, B are p’-conjugacy classes, one obtains this structure
result

Theorem 2 There exist modular towers (Hn+1 → Hn)n≥0 associated with G such that for any finite
set Σ of non archimedean places of k of residue characteristic not dividing |G| there exists a Q-rational
divisor tΣ and a projective system (Cn+1,Σ → Cn,Σ)k≥0 of geometrically irreducible HM-curves defined
over k verifying:

(i) Cn,Σ ⊂ Hn classifies G-covers (fn, αn) with group n
p G̃ and branch point divisor tfn = tfn,1 + tΣ

where |tfn,1| = 1, n ≥ 0.
(ii) lim

←−
n≥0

Cn,Σ(kP )noob 6= ∅, P ∈ Σ.

(iii) Cn,Σ(kΣ)noob 6= ∅, n ≥ 0.

Here n
p G̃ denotes the nth characteristic quotient of pG̃ and the ”noob” labelling (for no obstruction)

means we consider the sets of k-rational points corresponding to G-covers defined over k and not only
with field of moduli k.

This shows a strong arithmetical property is kept along some modular towers. It is a positive
result which emphasizes the difficulty of Fried’s conjectures about the disappearence of rational points
over a number field on a modular tower beyond a certain level [D04], [F95].

The paper is organized as follows. In section 1 we recall necessary definitions and basic results,
section 2 is devoted to the statements and examples, section 3 to the proofs. In section 4, we give
applications of our results such as theorems 1, 2.

I wish to thank P. Dèbes for encouraging me to write this paper and the careful re-reading he
made of it.
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1 Preliminaries

This section is devoted to recalling the necessary definitions and some basic facts about Hurwitz
spaces.

Given a morphism V → W of algebraic varieties and W0 →֒ W a subvariety, we will often denote
the fiber product V ×W W0 by VW0 . Also, given a finite group G and an integer r ≥ 1 we will denote
the set of all the r-tuples C = (C1, ..., Cr) of non trivial conjugacy classes of G by Cr(G); we will
sometimes write l(C) := r for the length of such a tuple C ∈ Cr(G). And for any conjugacy class C,
we will write o(C) for the order of any element in C. Eventually, given a tuple t′ = (t1, ..., tr) and two
integers 1 ≤ i < j ≤ r, we will write t′i,j := (ti, ..., tj).

1.1 G-covers and Hurwitz spaces

Recall a G-cover with group G is a pair (f, α) where f : X → P1 is a Galois cover with group G
and α : Aut(f) → G is a group isomorphism. One can attach to each G-cover of P1

C the three
following invariants: the monodromy group G, the branch point set t = {t1, ..., tr} ⊂ P1(C) and for
each t ∈ t the associated inertia canonical conjugacy class Ct . To summarize this, we will sometimes
say the considered G-cover has invariants G, (Ct)t∈t, t. Adopting the topological point of view, let
us recall what these invariants correspond to: given t = {t1, ..., tr}, introduce a topological bouquet
γ of P1

C\t, that is an r-tuple of homotopy classes of loops γ1, ..., γr based at some point t0 /∈ t

such that (1) γ1, ..., γr generate the topological fundamental group πtop
1 (P1(C)\t, t0) with the single

relation γ1...γr = 1 and (2) γi is a loop revolving once, counterclockwise, about ti, i = 1, ..., r. Now,
considering a G-cover f : X → P1

C, the monodromy action defines a permutation representation
πtop

1 (P1(C)\t, t0) → Per(f−1(t0)). The image group G of this representation is the monodromy group
(or, equivalently the Galois group) of f and the conjugacy class Cti of the image of γi in G is the
inertia canonical class corresponding to ti, i = 1, ..., r.

For any integer r ≥ 3 let Ur ⊂ (P1
C)r be the subset of (P1

C)r consisting of all r-tuples t′ =
(t1, ..., tr) ∈ (P1

C)r such that ti 6= tj for 1 ≤ i 6= j ≤ r, let Ur = Ur/Sr be the quotient space of
Ur by the natural action of the symmetric group Sr and σr : Ur → Ur/Sr the canonical projection.
Given a finite group G let ψr,G : Hr,G → Ur be the coarse moduli space (fine assuming Z(G) = {1})
for the category of G-covers of P1

C with group G and r branch points, where ψr,G is the application
which to a given isomorphism class of G-covers associates its branch point set. For any r-tuple
C = (C1, ..., Cr) ∈ Cr(G) let Hr,G(C) be the corresponding Hurwitz space [FV91], that is the union of
irreducible components of Hr,G parametrizing the isomorphism classes of G-covers with invariants G,
C, t. A point h = (h, (t1, ..., tr)) of the fiber productHr,G(C) ×Ur Ur then corresponds to a G-cover
given with an ordering of its branch points, which allows us to define a monodromy application:

M: Hr,G(C) ×Ur U
r → {C1, ..., Cr}

r

(h, (t1, ..., tr)) → (Ct1 , ..., Ctr )

This application, being continuous, is constant on each connected component of Hr,G(C) ×Ur Ur.
So, M−1(C) is a union of connected components of Hr,G(C) ×Ur Ur; we will denote this variety by
H′
r,G(C). We have a cartesian square:

H′
r,G(C)

Σr
//

ψ′r,G

��

�

Hr,G(C)

ψr,G

��

Ur
σr

// Ur

We will freely use the general theory of Hurwitz spaces (see for instance [FV91] and [V99]), and only
recall here the description of the fibers of ψr,G and ψ′

r,G in terms of Nielsen classes ni(C) and straight
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Nielsen classes sni(C) respectively, where:

ni(C) =





(1) G =< g1, ..., gr >
(g1, ..., gr) ∈ Gr (2) g1 · · · gr = 1

(3) gi ∈ Cσ(i), i = 1, ..., r for some σ ∈ Sr





and sni(C) is the set defined as ni(C), but replacing (3) by

(3)’ gi ∈ Ci for i = 1, ..., r.

We use the notation ni(C) and sni(C) for the corresponding quotient sets modulo the componentwise
action of the inner automorphism group, Inn(G).

Given t ∈ Ur, it is classical that (ψr,G)−1(t) is in bijection with ni(C). Furthermore, if we choose
an ordering of the branch points t′ = (t1, ..., tr) in t, then sni(C) is in bijection with (ψ′

r,G)−1(t′). The
correspondence is given by the monodromy action and depends on the choice of a topological bouquet
γ for P1(C)\t; we denote it by BCDγ (for B(ranch) (C)ycle (D)escription).

For later use, we also recall that two finite cyclotomic field extensions of Q - which we denote by

QC and Q′
C - are associated to C. Precisely, QC = Q

∆C and Q′
C = Q

∆′
C where ∆C and ∆′

C are the
closed subgroups of finite indice of GQ defined by ∆C = {σ ∈ GQ|C

χ(σ) = C up to permutation}
and ∆′

C = {σ ∈ GQ|C
χ(σ) = C} (here, χ : GQ → Ẑ is the cyclotomic character). Resulting from the

branch cycle argument [V99] lemma 2.8, QC is the field of definition of Hr,G(C) and Q′
C, the one of

H′
r,G(C). When QC = Q, we say that C is a rational union of conjugacy classes and, when Q′

C = Q,
that C is a tuple of rational conjugacy classes.

Finally, since Hurwitz spaces are only coarse moduli spaces in general, we will write Hr,G(C)(k)noob

for the set of all the k-rational points in the non obstruction locus that is, corresponding to G-covers
defined over k.

1.2 The covers Ψr,G and Ψ
′
r,G

From now on, we will always assume r ≥ 4. We first recall useful results about Hurwitz braid
groups and then give a description of the covers Ψr,G and Ψ′

r,G in terms of group actions. Fix
t = {1, ..., r} ∈ Ur(C) and t′ = (1, ..., r) ∈ Ur(C) and for k = 1, ..., r − 1 define the simple arcs
fk,i : [0, 1] → P1(C), i = 1, 2 by #

"
 
!
r k+1rk

fk,1

fk,2

>

<

and write qk: [0, 1] → Ur(C)
t → (1, ..., k − 1, fk,1(t), fk,2(t), k + 2, ..., r)

for the usual topological braid.

Let Hr be the abstract group given by the presentation with generators Q1, ..., Qr−1 and defining
relations

(1) QiQi+1Qi = Qi+1QiQi+1 for i = 1, ..., r − 2
(2) QiQj = QjQi for i, j = 1, ..., r − 1 with |j − i| > 1
(3) Q1Q2 · · ·Qr−1Qr−1 · · ·Q2Q1 = 1

and SHr the kernel of the morphism Hr → Sr, Qi → (i, i+ 1). Set

Ai,j := Q−1
j−1 · · ·Q

−1
i+1Q

−2
i Qi+1 · · ·Qj−1 = Qi · · ·Qj−2Q

−2
j−1Q

−1
j−2 · · ·Q

−1
i , 1 ≤ i < j ≤ r

(we will also often use the notation ai,j = A−1
i,j , 1 ≤ i < j ≤ r) and denote by Πk,r the subgroup of

SHr generated by {Ai,j}1≤i≤k,i<j≤r, k = 1, ..., r − 1. The following result will play an important part
in the proof of theorem 2.2. It is a direct corollary of lemma 1.8.2 [Bi74], which gives a presentation
of SHr with generators Ai,j , 1 ≤ i < j ≤ r and defining relations.
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Theorem 1.1 The groups Πk,r are normal in SHr, k = 1, ..., r − 1.

The next theorem gives the link between the abstract groups Hr, SHr and the topological fundamental
groups πtop

1 (Ur(C), t), πtop
1 (Ur(C), t′), more precisely, it states that

Theorem 1.2 (Artin (1925), Fadell and Van Buskirk (1962)) The group homomorphisms
ur: Hr → πtop

1 (Ur(C), t)
Qi → [(σr)∗(qi)]

and vr: SHr → πtop
1 (Ur(C), t′)

Ai,j → [qi · · · qj−2q
−2
j−1q

−1
j−2 · · · q

−1
i ]

are isomorphisms.

Let us use this result to show that Πk,r ≃ πtop
1 (Ur

t′k+1,r
(C), t′1,k), k = 1, ..., r − 1. For this, consider the

homotopy sequence of the fibration with connected fibers

pk+1,r : Ur(C) → Ur−k(C)
(t1, ..., tr) → (tk+1, ..., tr)

which gives rise to the short exact sequence of topological fundamental groups

1 → πtop
1 (Urt′k+1,r

, t′1,k) → πtop
1 (Ur, t′)

(pk+1,r)∗
→ πtop

1 (Ur−k, t′k+1,r) → 1

It follows from the definition of the topological braids (qi)1≤i≤r−1 that vr(Πk,r) < ker((pk+1,r)∗). The
group homomorphism ηk,r : SHr → SHr−k defined by ηk,r(Ai,j) = Ai−k,j−k if k < i < j ≤ r and
ηk,r(Ai,j) = 1 else is well defined and we get the commutative diagram with exact rows

1 // Πk,r //

vr |Πk,r
��

SHr

ηk,r
//

vr

��

SHr−k
//

vr−k

��

1

1 // πtop
1 (Ur

t′k+1,r
, t′1,k) // πtop

1 (Ur, t′)
(pk+1,r)∗

// πtop
1 (Ur−k, t′k+1,r)

// 1

But, according to theorem 1.2, the two last vertical arrows vr, vr−k are isomorphisms and, by the five
lemma so is the first one, vr|Πk,r

.
For any t ∈ Ur(C), for any t0 ∈ P1(C) \ t, any ordering t′ of t defines generators Q1, ..., Qr−1 of

πtop
1 (Ur(C), t) ≃ Hr [FV91] §1.3 as above. With these generators, the cover Ψr,G : Hr,G(C) → Ur

corresponds to the action of Hr on the fiber (Ψr,G)−1(t) ≃ ni(C) given by

Qi.g = (g1, ..., gi−1, g
gi
i+1, gi, gi+2, ..., gr), i = 1, ..., r − 1

Likewise, the cover Ψ′
r,G : H′

r,G(C) → Ur corresponds to the action of SHr on the fiber (ψ′
r,G)−1(t) ≃

sni(C) induced by the one of Hr on ni(C) [FV91] §1.4.
Fix now an (r − k)-tuple t′k+1,r = (tk+1, ..., tr) ∈ Ur−k(C) and consider the following cartesian

square

(H′
r,G)t′k+1,r

//

�
(Ψ′r,G)t′

k+1,r
��

H′
r,G

Ψ′r,G

��
Ur

t′k+1,r
// Ur

By Grauert-Remmert’s Theorem (for k = 1, Riemann’s Existence Theorem) the etale cover (Ψ′
r,G)t′k+1,r

:

(H′
r,G)t′k+1,r

→ Ur
t′k+1,r

extends to a ramified cover (Ψ
′
r,G)t′k+1,r

: (H
′
r,G)t′k+1,r

→ Uk associated with the

action of Πk,r induced by the one of SHr on sni(C). When k = 1, we obtain a ramified cover

(Ψ
′
r,G)t′2,r

: (H
′
r,G)t′2,r

→ P1
C with branch points t2, ..., tr and branch cycle description the images of

(A1,i)2≤i≤r under the permutation action of SHr on sni(C).
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Resulting from the branch cycle argument [V99] lemma 2.8, (H′
r,G)t′k+1,r

is defined over the field

Q′
C(t′k+1,r) and its image Σr((H

′
r,G)t′k+1,r

) is defined over a subfield Q(C′, t′k+1,r) of Q′
C(t′k+1,r) which

can be explicitely computed taking into account the rationality property of (C′, t′k+1,r) (for instance,
if C is a tuple of rational conjugacy classes then Q(C′, t′k+1,r) = Q(tk+1,r)). Similar fields can be
defined for any field Q of characteristic 0.

2 HM-subvarieties

2.1 HM-components of Hurwitz spaces

We recall here the definition and main properties of H(arbater)-M(umford) components of Hurwitz
spaces, which have been introduced by M. Fried [F95] and then studied by P. Dèbes and M. Emsalem
[DE03]. To do this, we need the notion of H(arbater)-M(umford) type for covers of P1. Given a finite
group G, an even integer r = 2s ≥ 4 and a symmetric r-tuple C of non trivial conjugacy classes of
G, that is consisting of s pairs (Ci, C

−1
i ), any r-tuple in ni(C) of the form g = (g1, g

−1
1 , ..., gs, g

−1
s ) =:

[g1, ..., gs] is called a Harbater-Mumford representative; we denote the set of all these r-tuples by
hm(C). A G-cover f : X → P1

C with ramification type [G,C, t] is said to be of Harbater-Mumford type
(a HM-G-cover for short) if there exists a topological bouquet γ for P1(C)\t and an r-tuple g ∈ hm(C)
such that BCDγ(f) = g. A HM-component of the Hurwitz space Hr,G(C) is the component of some
HM-cover. Equivalently, it is a component that corresponds to the orbit of some HM representative
under the action of the Hurwitz braid group Hr. The following theorem is proved in [F95], with
the assumption Z(G) = {1}, and in [DE03] without this assumption; a main tool of these proofs is
Wewer’s compactification of Hurwitz spaces [W98].

Theorem 2.1 The union HHM
2s,G(C) of all the HM-components of the Hurwitz space H2s,G(C) is de-

fined over QC. Likewise, the union H
′HM
2s,G (C) of all the HM-components of the Hurwitz space H′

2s,G(C)
is defined over Q′

C.

Using Fried’s terminology, say an r-tuple C of non trivial conjugacy classes of G is g-complete if for
any gi ∈ Ci, i = 1, ..., r, we have G =< g1, ..., gr > and an 2s-tuple C consisting of s pairs (Ci, C

−1
i ) of

non trivial conjugacy classes of G is HM -g-complete if, when removing a pair (Ci, C
−1
i ), the remaining

(2s − 2)-tuple is g-complete. Being HM-g-complete is a condition that ensures there is a single HM-
component in H′

2s,G(C), as proved in [F95] Th. 3.21. In particular, if C is both a rational union of

non trivial conjugacy classes of G and HM-g-complete, then the HM-component HHM
2s,G(C) of H2s,G(C)

is an geometrically irreducible variety defined over Q. Likewise, if C is both a tuple of non trivial
rational conjugacy classes of G and HM-g-complete, then the HM-component H

′HM
2s,G (C) of H′

2s,G(C)
is an geometrically irreducible variety defined over Q.

2.2 Definition

Given a finite group G and an integer r, the closed subvarieties of Hr,G, H′
r,G obtained by specializing

some of the branch points are of particularly interest when considering the regular inverse Galois
problem. We will deal with special kinds of such subvarieties - we call HM-subvarieties. More precisely,
given a symmetric 2s-tuple C = (C1, C

−1
1 , ..., Cs, C

−1
s ) of non trivial conjugacy classes of G, for any

t′k+1,2s ∈ U2s−k(Q), with 1 ≤ k ≤ 2s − 1 we will say that HHM
2s,G(C)′

t′k+1,2s
is the HM-subvariety

associated with the data (G,C, t′k+1,2s) and that HHM
2s,G(C)t′ := Σ2s(H

HM
2s,G(C)′

t′k+1,2s
) (which is a subset

of the fiber of Ψ2s,G above the set of all τ ∈ U2s(Q) such that t ⊂ τ) is the symmetrised HM-subvariety
associated with the data (G,C, t′k+1,2s). Finding HM-subvarieties which are geometrically irreducible
and defined over Q with k small is the aim of this paper.

Starting from a symmetric 2s-tuple C = (C1, C
−1
1 , ..., Cs, C

−1
s ) such that there is one single HM-

component in H′
2s,G(C) - or, equivalently, such that all the HM representatives fall in one single
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orbit OHM (C) ∈ sni(C)/SH2s - and given 1 ≤ k ≤ 2s − 1, for any t′k+1,2s ∈ U2s−k(Q), the number

of geometrically irreducible components of H
′HM
2s,G (C)t′k+1,2s

corresponds to the number of orbits of

OHM (C)/Πk,2s. Consider the associated symmetrised HM-subvariety, HHM
2s,G(C)t′k+1,2s

. An obvious

necessary condition to get one of its geometrically irreducible component defined over Q is given by
the branch cycle argument [V99] Lemma 2.8 that is,

(BCArg)





• (Ck+1, ...,C2s) is a rational union of conjugacy classes and tk+1,2s ∈ U2s−k(Q).

• For any σ ∈ GQ, C
χ(σ)
α(σ)(i) = Ci, with k + 1 ≤ i ≤ 2s where χ : GQ → Ẑ is the

cyclotomic character and α : GQ → S2s−k is the natural representation induced
by the action of GQ on t′k+1,2s.

The starting point of our work was problem B.2 [F95] raised by M.Fried and which asks for a
sufficient condition to ensure

(C1) all the HM representatives fall in one single orbit OHM1 (C) ∈ sni(C)/Π1,2s

Our main theorem (theorem 2.2) gives such a sufficient condition. However, OHM1 (C) may be strictly
contained in OHM (C), in which case, for general t′, no geometrically irreducible component of
HHM

2s,G(C)t′ is defined over Q.

Indeed, assume k = 1 and consider a birational equation H(t1, ..., t2s, Y ) = 0 of HHM
2s,G(C). Then

H(t1, ..., t2s, Y ) ∈ Q[t1, ..., t2s, Y ] is absolutely irreducible. Let H(t1, ..., t2s, Y ) =
∏

1≤i≤r

Fi(t1, Y ) be the factorization ofH(t1, ..., t2s, Y ) into a product of irreducible factors in Q(t2, ..., t2s)[t1, Y ].
Assume r ≥ 2 that is, H(t1, ..., t2s, Y ) splits and let z be a primitive element of the field generated over
Q(t2, ..., t2s) by the coefficients of the (Fi)1≤i≤r. The finite Galois extension Q(t2, ..., t2s, z)/Q(t2, ..., t2s)
is not trivial and we denote by h(t2, ..., t2s, Z) ∈ Q[t2, ..., t2s, Z] the irreducible polynomial of z (up to
multiplication by an element of Q[t2, ..., t2s]) over Q(t2, ..., t2s). By the Bertini-Noether theorem, there
exists a Zariski closed subset F of the hypersurface V (h) defined by h(t2, ..., t2s, Z) = 0 such that for
any (t02, ..., t

0
2s, z

0) ∈ V (h)(Q) \ F , the polynomials (Fi(t
0
2, ..., t

0
2s, z

0, t1, Y ))1≤i≤r remain irreducible in
Q[t1, Y ]. Setting W := (V (h)(Q) ∩ Q2s−1 × Q) \ F , Hilbert irreducibility theorem states there exists
a Zariski dense subset U of W such that for any (t02, ..., t

0
2s, z

0) ∈ U , Q(z0)/Q is a Galois extension
with group Gal(Q(z0)|Q) = Gal(Q(t2, ..., t2s, z)|Q(t2, ..., t2s)). In particular, GQ acts transitively on the
(Fi(t

0
2, ..., t

0
2s, z

0, t1,
Y ))1≤i≤r the same way as GQ(t2,...,t2s) does on the (Fi)1≤i≤r.

To get geometrically irreducible (symmetric) HM-subvarieties defined over Q we will have to choose
C = (C1, C

−1
1 , ..., Cs, C

−1
s ), 1 ≤ k ≤ 2s−1 and t′k+1,2s ∈ U2s−k(Q) in such a way that (BCArg) holds

and HHM
2s,G(C)′

t′k+1,2s
is geometrically irreducible, which is equivalent to the group theoretic following

transitivity condition:

(C2) Πk,2s acts transitively on the SH2s-orbit OHM (C)

Theorem 2.2 gives a sufficient condition depending on the conjugacy classes of G to obtain (C2) with
k as small as possible.

2.3 Irreducible HM-subvarieties defined over Q

2.3.1 Statements and comments

Given a group G, for any tuple a = (a1, ..., am) ∈ Gm and any tuple (E1, ..., En) of subsets of G, we
will write

< a<E1,...,En> >:=< {ae11 , ..., a
em
m }e1,...,em∈<E1,...,En> >

Given a tuple A = (A1, ..., Am) of subsets of G, the symbol a ∈ A means we consider a tuple of
elements a = (a1, ..., am) with ai ∈ Ai, i = 1, ...,m. Finally, given a tuple A = (A1, ..., Am) of
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conjugacy classes of G, we write [A] = (A1, A
−1
1 , ..., Am, A

−1
m ) and [A]r for the tuple obtained by

repeating r times [A].

Theorem 2.2 (Main Theorem) Let G be a finite group containing two tuples A = (A1, ..., Am),
B = (B1, ..., Bn) of non trivial conjugacy classes and consider the following hypotheses:

(H1)





(H1.0) There exists a ∈ A such that G =< a,B >.
(H1.1) < a<b> > acts transitively on Bi, for all a ∈ A, b ∈ B, i = 1, ..., n.

(H1.2) < a<B>
i > acts transitively on Ai, for all ai = (a1, ..., ai−1) ∈ A1 × · · · ×Ai−1,

i = 2, ...,m.

(H2) There exists bi ∈ Bi, bj ∈ Bj such that bibj = bjbi, 1 ≤ i 6= j ≤ n.

Then we have the conclusions

(C1) If A, B verify (H1) then for s large enough and writing Cs := ([A], [B]s), all the
HM-representatives fall in one single orbit OHM

2m−1(Cs) ∈ sni(Cs)/Π2m−1,2(m+sn).

(C2) If, in addition B verify (H2) then Π2m−1,2(m+sn) acts transitively on the SH2(m+sn)

-orbit OHM (Cs) ∈ sni(Cs)/SH2(m+sn).

Comments

1. For any t′ := t′2m,2(m+sn) ∈ U2sn+1(Q), conclusion (C1) in theorem 2.2 asserts that the points

corresponding to HM-representatives all lie on the same connected component of H
′HM
2(m+sn),G(Cs)t′ .

Conclusion (C2) asserts that H
′HM
2(m+sn),G(Cs)t′ is connected and consequently geometrically irre-

ducible defined over Q′
Cs

(t′). The same is true for the corresponding HM-subvariety HHM
2(m+sn),G(Cs)t′ ,

which is defined over the field Q(Cs, t
′) contained in Q′

Cs
(t′). Both H

′HM
2(m+sn),G(Cs)t′ and

HHM
2(m+sn),G(Cs)t′ are of dimension 2m − 1. In particular, when m = 1, we obtain HM-curves

and condition (H1.2) is empty. The constant c(G) mentioned in the introduction can be defined
by

c(G) = min{2m− 1| there exists A,B verifying (H1), (H2) with |A| = m}

Also observe that the tuple Cs = ([A], [B]s) built in theorem 2.2 is far from being unique. For
instance, any tuple of the form (Cs, Bi1 , B

−1
i1
, ..., Bit , B

−1
it

), 1 ≤ i1, ..., it ≤ n, t ≥ 0 also works.

2. Instead of (H1.1) and (H1.2) one can consider the stronger -but easier to check - conditions

{
(H1.1+) < a<b> >= G, for all a ∈ A, b ∈ B.

(H1.2+) < a<B>
i >= G, for all ai = (a1, ..., ai−1) ∈ A1 × · · · ×Ai−1, i = 2, ...,m.

These lead to the following practical corollary

Corollary 2.3 Let G be a finite group containing two tuples A = (A1, ..., Am) ∈ Cm(G) and
B = (B1, ..., Bn) ∈ Cn(G) such that

(i) G =< A1 >=< B >.
(ii) (A,B) ∈ Cm+n(G) is g-complete.
(iii) There exists bi ∈ Bi, bj ∈ Bj such that bibj = bjbi, 1 ≤ i 6= j ≤ n.

Then, for s large enough, writing Cs := ([A], [B]s), there is a unique SH2(m+sn) HM-orbit

OHM (Cs) ∈ sni(Cs)/SH2(m+sn) and Π2m−1,2(m+sn) acts transitively on it.
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Proof. For any a ∈ A, b ∈ B, < a<b> > is normal in < a,b >. But by (ii) < a,b >= G
thus, < a<b> > is normal in G and, in particular, contains < A1 >= G (by (i)), which implies
(H1.1+). As for (H1.2+), since < a<B>

i > is normal in < B >= G (by (i)) so it contains
< A1 >= G (by (i)), which implies (H1.2+). �

The hypotheses of corollary 2.3 are fulfilled automatically when G is simple and (A,B) g-
complete (cf. example (2)). They also are preserved by Frattini extensions (cf. proposition 2.6).
However compared with theorem 2.2, corollary 2.3 is often too restrictive (cf. examples (1) and
(3))

3. Compared with theorem 3.21 of [F95], observe that theorem 2.2 usually provides lower dimen-
sional geometrically irreducible varieties. For instance, with G = M11 and A = (8A), B = (11A)
(cf. example (2) below), the former provides an 8-dimensional variety whereas the latter pro-
vides a curve.

2.3.2 Examples

The purpose of this section is to give examples of groups verifying (H1.1), (H1.2) and (H2) (condition
(H1.0) is here to ensure hm(C) is not empty and it will always be fulfilled in our examples - where
either the tuple (A,B) is g-complete or the stronger condition (H1.1+) holds). We are particularly
interested in minimizing m that is, obtaining HM-subvarieties of low dimension.

(1) Symmetric and alternating groups: Consider the symmetric group Sp where p ≥ 5 is a prime

number, A = (C(p)) and B = (C(2)) where C(i) denotes the conjugacy class of i-cycles in G, i = 2, ..., p.
For any a ∈ C(p), b ∈ C(2), < a<b> >⊳< a, b >. But < a, b > is a transitive group of prime degree
p, so it is primitive [Wi84] Th.8.3 and, since it contains a 2-cycle, it is Sp Th.13.3 [Wi84]. As a
consequence < a<b> >= Ap, which acts transitively on the 2-cycles class. Likewise, consider the
alternating group G := Ap where p ≥ 5 is a prime number, A = (C(p)) and B = (C(3)). For any
a ∈ C(p), b ∈ C(3), < a<b> >⊳< a, b >. But < a, b > is a transitive group of prime degree p, so it
is primitive and, since it contains a 3-cycle it is Ap [Wi84] Th. 13.3. So conditions (H1) and (H2) hold.

(2) Non abelian finite simple groups: Suppose G is a non abelian finite simple group. With the
notation of corollary 2.3, observe that since G is simple hypotheses (i) is automatically fulfilled since
the groups < A1 >, < B > are normal. So we are only left to check hypotheses (ii) and (iii). Taking
n = 1, (iii) is automatically fulfilled too. So, for a simple group G we always have c(G) ≤ 2l(G) − 3
where l(G) denotes the minimal length of a g-complete tuple (A1, ..., Am, B) of non trivial conjugacy
classes of G

Example 2.4 1. According to the Atlas, the Mathieu group M11 has 10 conjugacy classes: 1A, 2A, 3A, 4A,
5A, 6A, 8A, B**, 11A, B** and its maximal subgroups have order 720, 660, 144, 120, 48. Since none of these
orders can be divided by both 8 and 11, (8A, 11A) is a g-complete 2-tuple for M11. So, M11 satisfies (H1) with
A = (8A), B = (11A).

2. The argument above, using the maximal subgroups given by the Atlas, works for instance with m = 1 and
M23 with A = 7A and B = 11A, (443520, 40320, 20160, 7920, 5760, 253).
Sz(8) with A = 5A and B = 7A, (448, 52, 20, 14).
J2 with A = 5A and B = 7A, (6048, 2160, 1920, 1152, 720, 600, 336, 300, 60).
J3 with A = 5A and B = 17A, (8160, 3420, 2880, 2448, 2160, 1944, 1920, 1152).
Ly with A = 37A and B = 67A, (5859.106 , 5388768.103 , 465.105 , 299168.102 , 9.106, 3849120, 699840, 1474, 666).
etc.

3. Consider the projective special linear groups L2(p) where p ≡ 3 [mod4], p ≥ 7 is a prime number. Then, by
a theorem of Dickson [Di]:Let p ≥ 5 a prime number, then the order of the maximal subgroups of the projective
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special linar group L2(p) belongs to { p(p−1)
2

, p− 1, p+ 1, 60} if p ≡ ±1 [mod10] and to { p(p−1)
2

, p− 1, p+ 1, 24, 12}
else, the tuple (2A, pA) is g-complete.

(3) Families of p-groups: All the assertions in the following can be found in [S86], Chap. 2 §2 or
Chap. 4 §4.

(3-1) p = 2: Then G is one of the following groups:

- Dihedral group of order 2n: D2n =< x, y|x2n−1
= y2 = 1, yxy = x−1 >.

- Special dihedral group of order 2n: S2n =< x, y|x2n−1
= y2 = 1, yxy = x−1+2n−2

>.
- Generalized quaternion group of order 2n: Q2n =< x, y|x2n−1

= y2, y−1xy = x−1 >.
and, taking A = CGy , B = CGx , using the relations, one immediately checks that for each a ∈ A
B = {x, axa−1}, so condition (H1.1) is fulfilled and, since m = n = 1, conditions (H1.2) and (H2)
are empty.

(3-2) p > 2: Recall that for any finite p-group G with Frattini

Lemma 2.5 Let G be a finite group with Frattini subgroup Φ(G). Assume the quotient G/Φ(G) is
abelian, then,, for any x1, ..., xd ∈ G such that G/Φ(G) =

⊕d
i=1 < xi >, the tuple C := (CGx1

, ..., CGxd
)

is g-complete.

Proof. Indeed, for any g1, ..., gd ∈ G, since G/Φ(G) is abelian, one has xgi
i = xi, i = 1, ..., r so

G =< xg11 , ..., x
gd
d ,Φ(G) > which, by the characterization of the Frattini subgroup, implies G =<

xg11 , ..., x
gd
d >. �

A finite p-group G has the property that G/Φ(G) is an elementary abelian p-group. Assume
furthermore that Φ(G) = Z(G) and G/Φ(G) =< x > ⊕ < y >. Then any g ∈ G can be written in
a unique way g = xugyvgφg = yvgxugψg with φg, ψg ∈ Z(G) and all the elements in A := CGy are of

the form yφ, φ ∈ Z(G) thus, for any a ∈ A, B = CGx = {aixa−i}i≥0 with < a >⊂< a<b> > for any
b ∈ B. This shows (H1.1) is fulfilled and, once again, since m = n = 1, conditions (H1.2) and (H2)
are empty. The following groups satisfy these hypotheses:

- M(pn) =< x, y|xp
n−1

= yp = 1, y−1xy = x1+pn−2
>.

- Any non abelian group of order p3 (Recall that an abelian group of order p3 is isomorphis to D8

or Q8 if p = 2 or to M(p3) or E(p3) if p > 2, where

E(p3) < x, y|xp = yp = [x, y]p = 1, [x, y] ∈ Z(E(p3)) >

(4) Frattini extensions: The next result is about Frattini extensions; it is related to Modular Towers
§4.1.2 and will be proved in 3.2. It will give us information about regular realizations of finite unsplit
extensions of a given finite group G, which is a difficult matter, even when the group G is known to
be regularly realized (this is the theory of embedding problems, [MMa99], Chap.V)

Proposition 2.6 (Frattini covers) Let G be a finite group verifying (H1.0), (H1.1+),(H1.2+) with
A = (A1, ..., Am), B = (B1, ..., Bn). Then, for s large enough, ([A], [B]s) verifies (C1) and

(C3) Given a finite Frattini cover G̃→ G, for any tuples Ã, B̃ above A, B, the tuple

([Ã], [B̃]s) verifies (C1).

We have the following additional conclusions:

(C4) If the Bi, i = 1, ..., n are p′-conjugacy classes for a given prime number p and G, A,

B verify (H2) then, given a finite Frattini cover G̃→ G with p-group kernel, there

exists tuples Ã,B̃ of conjugacy classes of G̃ above A and B such that the tuple ([Ã],

[B̃]s) verifies (C1) and (C2).

(C5) If n = 1 then, given a finite Frattini cover G̃→ G, for any tuples Ã, B̃ above A,

B, the tuple ([Ã], [B̃]s) verifies (C1) and (C2).
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Example 2.7 Here are two examples of central Frattini extensions we will deal with in the following:
- If G is perfect (that is, G = [G,G]) then, by Schur’s theorem, the universal central extension Ĝ ։ G of G exists;
furthermore, it is finite, Frattini and its kernel is the Schur Multiplier M(G) of G.
- If G is p-perfect (that is generated by elements of prime-to-p order) for some prime p dividing |G| then the universal

central p-extension cpG ։ G of G exists; furthermore, it is finite, Frattini and its kernel is the p-part M(G)p of the Schur
Multiplier M(G) of G.

3 Group theoretical proofs

This section is devoted to the proofs of theorems 2.2 and proposition 2.6. They rely on the following
technical lemma, the proof of which is postponed to section 3.3:

Lemma 3.1 Given a finite group G and a symmetric 2s-tuple C = [C1, ..., Cs] ∈ C2s(G).
(1) For any 1 ≤ k ≤ s there exists uk ∈ Π1,2s such that for any HM representative g = [g1, ..., gs] ∈
hm(C)

uk · g = [g1, ..., g
g1
k , ..., gs]

(2) For any 2 ≤ k ≤ s and for any i = (i1, ..., ir) with 2 ≤ i1 < i2 < ... < ir ≤ k − 1 there exists
vi,k ∈ Π1,2s such that for any HM representative g = [g1, ..., gs] ∈ hm(C)

vi,k · g = [g1, ..., g
g

gir ...gi1
1
k , ..., gs]

(3) For any 2 ≤ k ≤ s, for any i = (i1, ..., ir) with k + 1 ≤ i1 < i2 < ... < ir ≤ s − 1 there exists
wk,i ∈ Π1,2s such that for any HM representative g = [g1, ..., gs] ∈ hm(C)

wk,i · g = [g1, ..., g
g

gir ...gi1
1
k , ..., gs]

The underlying idea of lemma 3.1 (and of the whole proof) is that, the larger the tuple [C2, ..., Cs]
is, the larger the groups Gk generated by the g

gir ...gi1
1 , 2 ≤ i1 < i2 < ... < ir ≤ k − 1 (resp.

k + 1 ≤ i1 < i2 < ... < ir ≤ s− 1) are; our purpose is to show that under the assumptions of theorem
2.2 these groups are large enough to act transitively on the conjugacy classes C2, ..., Cs.

3.1 Proof of theorem 2.2

In the following, we say σ = (σ(1), ..., σ(ν)) is an ordered ν-tuple in a subset Σ ⊂ N if σ(k) ∈ Σ,
k = 1, ..., ν and σ(1) < σ(2) < ... < σ(ν). Given such an ordered ν-tuple σ, we write σ + l for the
translated ordered ν-tuple (σ(1) + l, ..., σ(ν) + l).

3.1.1 Case m = 1

Let G be a finite group and A, B = (B1, ..., Bn) be n+ 1 non trivial conjugacy classes of G.

(1) Given b = (b1, ..., bn) ∈ B, write < b >= {β1, ..., βs}; each βj can be written as a product of say
s(j) terms of the form bσk,j

:= bσk,j(1) · · · bσk,j(νk,j) where σk,j = (σk,j(1), ..., σk,j(νk,j)) is an ordered
tuple in {1, ..., n}, k = 1, ..., s(j), j = 1, ..., s. Setting N(b) = max{s(j)}1≤j≤s, the set

{bσ1 · · ·bσs}σ ordered tuple in {1,...,n}
s≤N(b)

contains < b >, that is, is equal to < b >. And, since by definition < a<b> > is the subgroup
generated by {ab}b∈<b>, one deduces from the above that

< a<b> >=< {abσ1 ···bσs}σ ordered tuple in {1,...,n}
s≤N(b)

>
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(2) Write Ni = |Bi|, i = 1, ..., n and N0 = max{N(b)}b∈B and set N = N1 · · ·NnN
0. Then, for any

(bi,1, ..., bi,n)1≤i≤N ∈ BN there is at least one b = (b1, ..., bn) ∈ B which is repeated N0 times among
the (bi,1, ..., bi,n), i = 1, ..., N and since N(b) ≤ N0, step (1) yields:

Lemma 3.2 There exists N := N(B) ≥ 1 depending only on B such that for any (ui)1≤i≤nN :=
(bi,1, ..., bi,n)1≤i≤N ∈ BN there exists b ∈ B satisfying

< a<b> >=< {auσ(ν)···uσ(1)}σ ordered tuple in {1,...,nN} >, for each a ∈ A

We now show that, for x ≥ N(B) + 1, the tuple Cx = ([A], [B]2x) will satisfy (C1) provided A, B
satisfy (H1) and (C2) provided B also satisfies (H2).

(H1) ⇒ (C1): For any 1 ≤ k ≤ 4nx one can always find in [B]2x either N(B) + 1 copies of [B]
before k (if 2nx ≤ k ≤ 4nx) or N(B) + 1 copies of [B] after k ( if 0 ≤ k ≤ 2nx). Let g =
[a, h1, ..., h2nx] ∈ hm(Cx) be a HM-representative and g ∈ G. We are to show that, for any 1 ≤
k ≤ 2nx, g and [a, h1, ..., h

g
k , ..., h2nx] fall in the same orbit under Π1,4nx+2. Suppose for instance

2nx ≤ 2k ≤ 4nx, that is there are at least N(B) + 1 copies of [B] before k and so, according to
lemma 3.2, there is at least one n-tuple b = (b1, ..., bn) ∈ B such that < a<b> > is generated by
the set {ahσ(ν)···hσ(1)}σ ordered tuple in {1,...,nx−1}. But since < a<b> > acts transitively on the conjugacy

class of hk, we can assume that g ∈< a<b> > and, consequently, that g can be written as a product
x1 · · · xs of s terms of the form xk = ahσk(νk)···hσk(1) , where σk = (σk(1), ..., σk(νk)) is an ordered tuple
in {1, ..., nx − 1}, k = 1, ..., s. So, we are left to do the following s operations

g → [a, h1, ..., h
xs
k , ..., h2nx]

→ [a, h1, ..., h
xs−1xs

k , ..., h2nx]
. . .
→ [a, h1, ..., h

x1···xs−1xs

k , ..., h2nx]

But, according to part (2) of lemma 3.1, these can be handled by applying successively vσs+1,k+1,
vσs−1+1,k+1 etc., k = 1, ..., s. If 1 ≤ k ≤ 4nx, use part (3) of lemma 3.1 instead of part (2).

(H1) & (H2) ⇒ (C2): From now on, we denote by C the tuple Cx built above and set s = 2nx+ 1.
We assume furthermore (H2) is fulfilled that is, there exists bi ∈ Bi, bj ∈ Bj such that bibj = bjbi,
1 ≤ i 6= j ≤ n. We have shown that all the HM-representatives fall in one single orbit OHM

1 (C) ∈
sni(C)/Π1,2s so in one single orbit OHM

2 (C) ∈ sni(C)/Π2,2s as well. In the first place, we prove the
Π2,2s HM-orbit OHM

2 (C) has the same length as the SH2s HM-one OHM(C), that is, they coincide. In
the second place we show that OHM

2 (C) = OHM
1 (C).

Condition (H2) implies SH2s leaves OHM
2 (C) globally invariant. Indeed, since Π2,2s is normal in

SH2s, SH2s permutes the orbits of sni(C)/Π2,2s. But, for any HM-representative g = [g1, ..., gs] ∈
hm(C), straightforward computations give





a2i,2j · g=([g1, ..., gi−1], gi, (g
−1
i )g−1

i gj , [gi+1, ..., gj−1], g
g−1

i
j , g−1

j , [gj+1, ..., g2nx+1]), 2 ≤ i < j ≤ s

a2i,2j+1 · g=([g1, ..., gi−1], gi, (g
−1
i )

g
−1
i g
−1
j , [gi+1, ..., gj−1], gj , (g

−1
j )

g
−1
j g
−1
i , [gj+1, ..., g2nx+1]), 2 ≤ i ≤ j ≤ s− 1

a2i−1,2j · g=([g1, ..., gi−1], g
gj

i , g−1
i , [gi+1, ..., gj−1], g

gi
j , g−1

j , [gj+1, ..., g2nx+1]), 2 ≤ i ≤ j ≤ s

a2i−1,2j+1 · g=([g1, ..., gi−1], g
g−1

j

i , g−1
i , [gi+1, ..., gj−1], gj , (g

−1
j )

g−1
j gi , [gj+1, ..., g2nx+1]), 2 ≤ i < j − 1 ≤ s− 2

Consequently, any HM-representative g = [g1, ..., gs] ∈ hm(C) with gigj = gjgi - such a HM rep-
resentative always exists according to (H2) and the way C was built - is fixed by ai,j that is,
ai,j · O

HM
2 (C) = OHM2 (C), 3 ≤ i < j ≤ 2s. And, since OHM2 (C) is a Π2,2s orbit, we obviously

have ai,j ·O
HM
2 (C) = OHM2 (C), i = 1, 2 < j ≤ 2s. Consequently

SH2s ·O
HM
2 (C) = OHM2 (C)

⊃ SH2s · hm(C) = OHM (C)
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We now show that OHM1 (C) = OHM2 (C). As above, Π1,2s being normal in Π2,2s entails that
Π2,2s permutes the orbits of sni(C)/Π1,2s. Thus, it is enough to show that for any i = 3, ..., 2s there
exists g ∈ hm(C) with a2,i · g ∈ OHM1 (C). But, for any HM-representative g = [g1, ..., gs] ∈ hm(C)
straightforward computations give





a−1
2,2i+1 · g = (g1, (g

−1
1 )gi , [g2, ..., gi−1], gi, (g

−1
i )g1 , [gi+1, ..., gs])

= (g
g−1

i
1 , g−1

1 , [g
g−1

i
2 , ..., g

g−1
i

i−1 ], gi, (g
−1
i )g−1

i g1 , [g
g−1

i
i+1 , ..., g

g−1
i

s ])

a−1
2,2i · g = (g1, (g

−1
1 )g−1

i [g2, ..., gi−1], g
g−1

i g1

i , g−1
i , [gi+1, ..., gs])

= (g
gi
1 , g−1

1 [g
gi
2 , ..., g

gi
i−1], g

g1
i , g−1

i , [g
gi
i+1, ..., g

gi
s ])

and, by lemma 3.1, there exists ui,g, vi,g ∈ Π1,2s such that

{
ui,g · g = [g1, [g

g−1
i

2 , ..., g
g−1

i
i−1 ], gi, [g

g−1
i

i+1 , ..., g
g−1

i
2nx+1]]

vi,g · g = [g1, [g
gi
2 , ..., g

gi
i−1], gi, [g

gi
i+1, ..., g

gi
2nx+1]]

so, {
a1,2i · ui,g · g = a−1

2,2i+1 · g

a1,2i−1vi,g · g = a−1
2,2i · g

�

3.1.2 Case m ≥ 2

Keeping the same notation as above the 2s-tuple we are going to consider will be once again of the
form Cx = ([A], [B]2x) with x large enough. The following lemma is a straightforward generalization
of lemma 3.2.

Lemma 3.3 Let G be a finite group andconsider two tuples A = (A1, ..., Am) ∈ Cm(G), B =
(B1, ..., Bn) ∈ Cn(G). There exists N := N(B) ≥ 1 depending only on B such that for any (ui)1≤i≤nN :=
(bi,1, ..., bi,n)1≤i≤N ∈ BN there exists b ∈ B satisfying

< a<b> >=< {a
uσ(ν)···uσ(1)

i } 1≤i≤m

σ ordered tuple in {1,...,nN}

>, for each a ∈ A

(H1) ⇒ (C1) & (C2): As in section 3.1.1, if x ≥ N+1, condition (H1.1) ensures two HM-representatives

of the form [a1, ..., am, h1, ..., h2nx] and [a1, ..., am, h
g1
1 , ..., h

g2nx
2nx ] fall in the same orbit under Π2m−1,4nx+2m.

To prove it, just observe the method used to construct the elements uk, vi,k, wk,i of Π1,2s in lemma
3.1 gives similarly elements uik, v

i
i,k, w

i
k,i of Π2i−1,2s such that





uik · g = [g1, ..., g
gi

k , ..., gs] , 1 ≤ i < k ≤ s

vii1<...<ir,k · g = [g1, ..., g
g

gir ...gi1
i
k , ..., gs] , i = (i1, ..., ir) with i < i1 < i2 < ... < ir < k

wik,i1<...<ir · g = [g1, ..., g
g

gir ...gi1
i
k , ..., gs] , i = (i1, ..., ir) with i < k < i1 < i2 < ... < ir

Now, let 2 ≤ i ≤ m and g ∈ G. We are left to show g = [a1, ..., am, h1, ..., h2nx] and [a1, ..., a
g
i , ..., am, h

g1
1 ,

..., hg2nx
2nx ] fall in the same orbit under Π2m−1,4nx+2m. First note that there exists a constant M ≥ 1

such that any element of < B > can be written as the product of at most M elements of ∪1≤i≤nBi. Up
to increasing the number x of copies of B0, we assume 2x ≥M . Since < a<B>

i > acts transitively on
the conjugacy class of ai, we can assume that g ∈< a<B>

i > and consequently that g can be written as

the product x1 · · · xs of s terms of the form xk = a
bk,νk

···bk,1

ik
, where ik ∈ {1, ..., i− 1}, bk,j ∈ ∪1≤i≤nBi,

j = 1, ..., νk and νk ≤M , k = 1, ..., s. So, this time, we have to carry out the following s operations

g → [a1, ..., a
xs
i , ..., am, h1, ..., h2nx]

→ [a1, ..., a
xs−1xs

i , ..., am, h1, ..., h2nx]
. . .
→ [a1, ..., a

x1···xs−1xs

i , ..., am, h1, ..., h2nx]
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Since 2x ≥ M , one can always find (h′1, ..., h
′
2nx) ∈ B2x and s ordered tuples σk = (σk(1), ..., σk(νk))

in {1, ..., 2nx}, k = 1, ..., s such that bk,i = h′σk(i), i = 1, ..., νk, k = 1, ..., s. But, as already noticed,

[a1, ..., am, h1, ..., h2nx] and [a1, ..., am, h
′
1, ..., h

′
2nx] fall in the same orbit of Π2m−1,4nx+2m. Then apply

successively the elements wisσs+m,i
, w

is−1

σs−1+m,i etc., k = 1, ..., r to [a1, ..., am, h
′
1, ..., h

′
2nx] in order to

obtain [a1, ..., a
g
i , ..., am, h

′
1, ..., h

′
2nx]. To conclude, use once again that [a1, ..., a

g
i , ..., am, h

′
1, ..., h

′
2nx]

and [a1, ..., a
g
i , ..., am, h1, ..., h2nx] fall in the same orbit of Π2m−1,4nx+2m.

(H1) & (H2) ⇒ (C3): This part of the proof remains unchanged since (H2) ensures SH4nx+2m leaves

OHM2m−1(Cx) globally invariant.

3.2 Proof of proposition 2.6

We retain the notation of 3.1.1, 3.1.2 and of proposition 2.6. Consider the integer N := N(B) ≥ 1
defined in lemma 3.3. Then, according to (H1+), for any (ũi)1≤i≤nN := (b̃i,1, ..., b̃i,n)1≤i≤N ∈ B̃N

there exists b̃ ∈ B̃ satisfying

G =< {s(ã
ũσ(ν)···ũσ(1)

i )} 1≤i≤m

σ ordered tuple in {1,...,nN}

>, for each ã ∈ Ã

But, s : G̃→ G being a Frattini cover, this entails

G̃ =< {ã
ũσ(ν)···ũσ(1)

i } 1≤i≤m

σ ordered tuple in {1,...,nN}

>, for each ã ∈ Ã

So we can always take N = N(B) = N(B̃). Now, recall that in (H1) ⇒ (C1) & (C2) we have also
imposed that 2x ≥ M . The Frattini property shows M does not have to be increased when passing
from G to G̃. Indeed, (H2+) means that

G =< {s(ãβ̃1···β̃l
k )} 1≤k≤i−1

βj∈∪1≤i≤nB̃i, l≤M

for each ãi ∈ Ã1 × · · · × Ã1, i = 2, ...,m.

which entails that

G̃ =< {ãβ̃1···β̃l
k )} 1≤k≤i−1

βj∈∪1≤i≤nB̃i, l≤M

for each ãi ∈ Ã1 × · · · × Ã1, i = 2, ...,m.

This and section 3.1.2 show the 4nx+ 2m-tuple C̃ one gets replacing Ai by Ãi, i = 1, ..., n and Bi by
B̃i, i = 1, ...,m satisfies (C1). As for the second part of proposition 2.6, we are left to show B̃ can
be chosen in such a way that the commutativity conditions (H2) are still fulfilled. For this, choose
bi ∈ Bi and apply Schur-Zassenhauss lemma to the short exact sequence

1 → ker(s) → s−1(< bi >)
s→< bi >→ 1

which splits uniquely up to conjugation, defining thus a single conjugacy class B̃i above Bi the elements
of which have the same order as those of Bi, i = 1, ..., n. Let us show the n-tuple B̃ = (B̃1, ..., B̃n)
works. For any 1 ≤ i 6= j ≤ n let bi ∈ Bi, bj ∈ Bj such that bibj = bjbi so, in particular < bi, bj >≃<
bi > × < bj >. Once again Schur-Zassenhauss lemma implies the short exact sequence

1 → ker(s) → s−1(< bi, bj >)
s→< bi, bj >→ 1

splits uniquely up to conjugation and, in particular that, for any section σ of s we have σ(bi)σ(bj) =
σ(bj)σ(bi) with σ(bi) ∈ B̃i, σ(bj) ∈ B̃j. This proves (1) and (2) is straightforward since n = 1.

3.3 Proof of lemma 3.1

We proceed in two steps:

14



3.3.1 First step

Set

Bi1,2s =
{
Q2α1+1

1 Q2α2+1
2 ...Q

2αi−1+1
i−1 Q2γi

i Q
2βi−1+1
i−1 ...Q2β2+1

2 Q2β1+1
1

}
α1,...,αi−1∈Z
β1,...,βi−1∈Z

γi∈Z−{0}

, i = 1, ..., 2s

and B1,2s :=
⋃2s
i=1 B

i
1,2s. Then B1,2s is contained in Π1,2s. Indeed, each of the Bi1,2s, i = 1, ..., 2s is. For

i = 1, this is obvious. For 2 ≤ i ≤ 2s, this results from the following equality: for any α1, ..., αi−1 ∈ Z,
β1, ..., βi−1 ∈ Z, γi ∈ Z − {0}

aα2
1,2a

α3
1,3...a

αi−1

1,i−1a
γi
1,ia

βi−1+1
1,i−1 ...aβ3+1

1,3 aβ2+1
1,2 = Q2α1+1

1 Q2α2+1
2 ...Q

2αi−1+1
i−1 Q2γi

i Q
2βi−1+1
i−1 ...Q2β2+1

2 Q2β1+1
1

one can check computing ”from the center”, i.e.:

aγi
1,ia

βi−1+1
1,i−1 = Q1...Qi−1Q

2γi
i Q

2βi−1+2−1
i−1 Q−1

i−2...Q
−1
1

a
αi−1

1,i−1(a
γi
1,ia

βi−1+1
1,i−1 ) = a

αi−1

1,i−1Q1...Qi−1Q
2γi
i Q

2βi−1+1
i−1 Q−1

i−2...Q
−1
1

= Q1...Qi−2Q
2αi−1+1
i−1 Q2γi

i Q
2βi−1+1
i−1 Q−1

i−2...Q
−1
1

(a
αi−1

1,i−1(a
γi
1,ia

βi−1+1
1,i−1 ))a

βi−2+1
1,i−2 = Q1...Qi−2Q

2αi−1+1
i−1 Q2γi

i Q
2βi−1+1
i−1 Q−1

i−2...Q
−1
1 a

βi−2+1
1,i−2

= Q1...Qi−2Q
2αi−1+1
i−1 Q2γi

i Q
2βi−1+1
i−1 Q

2βi−2+2−1
i−2 Q−1

i−3...Q
−1
1

etc. ...

3.3.2 Second step

We use now elements of B1,2s to build uk, vi,k et wk,i.
Set αk := Q2k−2Q

2
2k−1Q2k−2, k = 2, ..., s and note that

αk.(h1, ..., h2k−3, g, gk, g
−1
k , h2k+1, ..., h2s) = (h1, ..., h2k−3, g, g

g
k , (g

g
k)

−1, h2k+1, ..., h2s)

(1) Construction of uk:

Set βk := Q2k−3...Q1, k = 2, ..., s, then, for any g = [g1, ..., gs] ∈ hm(C),
- β2 · g = (g−1

1 , g1, [g2, ..., gs]).
- β3 · g = (g−1

1 , gg12 , (g
g1
2 )−1, g1, [g3, ..., gs]).

- By recurrence, observing that βk+1 = Q2k−1Q2k−2βk, k ≥ 1, conclude that

βk · g = (g−1
1 , [gg12 , ..., g

g1
k−1], g1, [gk, ..., gs])

So, setting uk = β−1
k αkβk ∈ B1,2s, one gets :

uk · g = β−1
k · (αk · (g

−1
1 , [gg12 , ..., g

g1
k−1], g1, [gk, ..., gs])

= β−1
k · (g−1

1 , [gg12 , ..., g
g1
k−1], g1, [g

g1
k , ..., gs])

= β−1
k · (βk · [g1, g2, ..., gk−1, g

g1
k , gk+1, ..., g2s])

= [g1, g2, ..., gk−1, g
g1
k , gk+1, ..., g2s]

In the following, given i = (i1, ..., ir) with 1 < i1 < ... < ir ≤ s and g = [g1, ..., gs] ∈ hm(C), we

will write γ(i, j) = g
gij

···gi1

1 , j = 1, ..., r.

(2) Construction of vi,k:

In this section, given i = (i1, ..., ir) with 1 < i1 < ... < ir ≤ s and g = [g1, ..., gs] ∈ hm(C), we will

write gi,0 = [gg12 , ..., g
g1
i1−1] and gi,j = [g

γ(i,j)
ij+1 , ..., g

γ(i,j)
ij+1−1], j = 1, ..., r.

For any 1 ≤ i < j ≤ s, write γi<j := Q−1
2j−1Q2j−2 · · ·Q2i, which acts this way:

γi<j .(h1, ..., h2i−1, g, [gi+1, ..., gj ], h2j+1, ..., h2s) = (h1, ..., h2i−1, [g
g
i+1, ..., g

g
j−1], g

g
j , g

−1
j , ggj , h2j+1, ..., h2s)
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and for any i = (i1, ..., ir) with 1 < i1 < ... < ir ≤ s set γ
(1)
i := γir−1<ir ◦ · · · ◦γi1<i2 ◦γ1<i1 ◦Q1. Then,

for any g = [g1, ..., gs] ∈ hm(C):

- For any 1 < i1 ≤ s, γ
(1)
(i1) · g = γ1<i1 · g = (g−1

1 , [gg12 , ..., g
g1
i1−1], g

g1
i1
, g−1
i1
, g
gi1
1 , [gi1+1, ..., gs]).

- By recurrence, observing that γ
(1)
(i,ir+1)

= γir<ir+1γ
(1)
i , i = (i1, ..., ir) with 1 < i1 < ... < ir < s,

ir < ir+1 < s, r ≥ 1, conclude that

γ
(1)
i · g = (g−1

1 ,gi,0, g
g1
i1
, g−1
i1
,gi,1, ..., g

γ(i,r−2)
ir−1

, g−1
ir−1

,gi,r−1, g
γ(i,r−1)
ir

, g−1
ir
, γ(i, r), [gir+1, ..., gs])

Finally, given i = (i1, ..., ir), k with 1 < i1 < ... < ir < k ≤ s write γ
(2)
i,k := Q2k−3...Q2ir .γ

(1)
i and

compute

γ
(2)
i,k · g = (g−1

1 ,gi,0, g
g1
i1
, g−1
i1
,gi,1, ...,gi,r−1, g

g(i,r−1)
ir

, g−1
ir
, [g

g(i,r)
ir+1 , ..., g

g(i,r)
k−1 ],g(i, r), [gk, ..., gs])

So, setting

vi,k = (γ
(2)
i,k )−1αkγ

(2)
i,k ∈ B1,2s

for any g = [g1, ..., gs] ∈ hm(C) one gets:

vi,k · g = (γ
(2)
i,k )−1γ

(2)
i,k · [g1, ..., gk−1, g

g
gir ...gi1
1
k , gk+1, ..., gs]

= [g1, ..., gk−1, g
g

gir ...gi1
1
k , gk+1, ..., gs]

(3) Construction of wk,i:

In this section, given i = (i1, ..., ir) with 1 < i1 < ... < ir ≤ s and g = [g1, ..., gs] ∈ hm(C), we will

write gi,0 == [g
γ(i,r)−1

2 , ..., g
γ(i,r)−1

i1−1 ] and gi,j = [g
γ(i,r)−1

ij+1 , ..., g
γ(i,r)−1

ij+1−1 ], j = 1, ..., r.

For any 2 ≤ i < j ≤ s, write δi<j := Q−1
2j−3 · · ·Q

−1
2i−1Q2i−2, which acts this way:

δi<j .(h1, ..., h2i−3, g, [gi, ..., gj−1], h2j+1, ..., h2s) = (h1, ..., h2i−3, g
g
i , g

−1
i , [gi+1, ..., gj−1]g

gi , h2j+1, ..., h2s)

and for any i = (i1, ..., ir) with 1 < i1 < ... < ir ≤ s set δ
(1)
i := δir<ir+1◦δir−1<ir ◦· · ·◦δi1<i2 ◦δ1<i1 ◦Q1.

Then, for any g = [g1, ..., gs] ∈ hm(C):

δ
(1)
i · g = (g−1

1 , [g2, ..., gi1−1], g
g1
i1
, g−1
i1
, [gi1+1, ..., gi2−1], ..., g

γ(i,r−2)
ir−1

, g−1
ir−1

, [gir−1+1, ..., gir−1],

g
γ(i,r−1)
ir

, g−1
ir
, γ(i, r − 1), [gir+1, ..., gs])

Next, set δ
(2)
i := Q−1

1 · · ·Q−1
2ir−1 · δ

(1)
i ∈ B2s and compute

δ
(2)
i · g = (γ(i, r), (g−1

1 )γ(i,r)
−1
,gi,0, (g

g1
i1

)γ(i,r)
−1
, (g−1

i1
)γ(i,r)

−1
,gi,1, ..., (g

γ(i,r−2)
ir−1

)γ(i,r)
−1
, (g−1

ir−1
)γ(i,r)

−1
,

gi,r−1, (g
γ(i,r−1)
ir

)γ(i,r)
−1
, (g−1

ir
)γ(i,r)

−1
, [gir+1, ..., gs])

Finally, given i = (i1, ..., ir), k with 1 < k < i1 < ... < ir ≤ s write δ
(3)
k,i := eiαirek,ir where

{
ei = Q1 · · ·Q2i1−3Q

−1
2i1−2Q2i1−1 · · ·Q2ir−1−3Q

−1
2ir−1−2Q2ir−1−1 · · ·Q2ir−3

ek,ir = Q2ir−3 · · ·Q2kQ
−1
2k−1Q

−1
2k−2Q2k−3 · · ·Q1

then, δ
(3)
k,i ∈ B2s, which entails w0

k,i := δ
(3)
k,i · δ

(2)
i ∈ Π1,2s and for any g = [g1, ..., gs] ∈ hm(C) one gets

w0
k,i · g = [g1, ..., gk−1, g

(g−1
1 )

gir ···gi1

k , gk+1, ..., gs]

As a result, wk,i = (w0
k,i)

|<g1>|−1 ∈ Π1,2s works. Note that, this is the only step in the proof of lemma
3.1 where we use the assumption G is finite. Actually, part (1) and (2) of lemma 3.1 remain true
without this assumption and part (3) only requires g1 to be of finite order.
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4 The regular inverse Galois problem with fixed branch points

4.1 General strategy

4.1.1 For a finite group

We would like now to apply theorem 2.2 to the regular inverse Galois problem with fixed branch
points. Consider a field Q of characteristic 0, a finite group G, a symmetric 2s-tuple (resp. rational
union of conjugacy classes) C = [C1, ..., Cs] ∈ C2s(G) and suppose that (C1) and (C2) from theorem
2.2 are satisfied that is, there exists 1 ≤ l ≤ 2s such that all the HM representatives of sni(C) fall in
one single orbit OHM (C) ∈ sni(C)/SH2s and Πl,2s acts transitively on this orbit. Then, H

′HM
2s,G (C)

(resp. HHM
2s,G(C)) is a geometrically irreducible variety defined over Q′

C (resp. over Q) such that for

any t′l+1,2s ∈ U2s−l+1(Q), the HM-subvariety H
′HM
2s,G (C)t′l+1,2s

(resp. the symmetrised HM-subvariety

HHM
2s,G(C)t′l+1,2s

) is a smooth geometrically irreducible variety of dimension l defined over the finite

extension Q′
C(t′l+1,2s)/Q (resp. the finite extension Q(C, t′l+1,2s)/Q). So the problem is reduced to

studying the rational points of a smooth modular geometrically irreducible variety V of dimension l
defined over a finite extension k0/Q.

This situation is particularly adapted to the Local-global principle [Mo89], [GPR97] that is: con-
sidering a global field k0 and a nonempty finite set of places Σ and denoting by kΣ

0 /k0 the maximal
extension of k0 in a separable closure ks0/k0 which is totally split at each v ∈ Σ, the local-global
principle for varieties states that, for any smooth geometrically irreducible kΣ

0 -variety V , if V (k0v) 6= ∅
for each embedding kΣ

0 →֒ k0v and each v ∈ Σ then V (kΣ
0 ) 6= ∅. This applies in particular to k0 = Q

and Σ = {p}, where p is a prime number (resp. ∞) that is, k0p = Qp, k
Σ
0 = Qtp (resp. k0∞ = R,

kΣ
0 = Qtr).

So, using the modular interpretation of Hurwitz spaces we can state, for instance:

Proposition 4.1 Fix a finite group G, a symmetric 2s-tuple C = [C1, ..., Cs] ∈ C2s(G) and an integer
1 ≤ l ≤ 2s. Let k0 be a global field and Σ a nonempty finite set of places. Assume

(Trans) All the HM representatives fall in one single orbit OHM (C) ∈ sni(C)/SH2s

and Πl,2s acts transitively on this orbit.

(LocReal) There exists a tuple t′Σ,l+1,2s ∈ U2s−l(k0) such that Q(C, t′Σ,l+1,2s) ⊂ k0 and, for each

v ∈ Σ, there exists a HM G-cover f defined over k0v with invariants G, C (t′f , t
′
Σ)

(where tf ∈ Ul(k0v) depends on f).

Then there exists a HM G-cover f defined over kΣ
0 with invariants G,C and branch points (t′f , t

′
Σ,l+1,2s)

(where tf ∈ Ul(k
Σ
0 ) depends on f).

Proof. In terms of Hurwitz spaces, condition (Trans) implies that HHM
2s,G(C) is a geometrically ir-

reducible variety defined over k0 and that for any t′l+1,2s ∈ U2s−l(k0), HHM
2s,G(C)t′l+1,2s

remains ge-

ometrically irreducible. Furthermore, according to condition (LocReal), there exists t′Σ,l+1,2s ∈

U2s−l(k0) such that HHM
2s,G(C)t′Σ,l+1,2s

(k0v)
noob 6= ∅, v ∈ Σ with Q(C, t′Σ,l+1,2s) ⊂ k0. So, since

HHM
2s,G(C)t′Σ,l+1,2s

is smooth, geometrically irreducible and defined over k0, the local-global principle

entails that HHM
2s,G(C)t′Σ,l+1,2s

(kΣ
0 )noob 6= ∅, which is the expected conclusion when, for instance, Z(G) =

{1}. Else, the local-global principle should be applied to the global descent variety D2s,G(C)t′Σ,l+1,2s

[DDoMo04] associated with HHM
2s,G(C)t′Σ,l+1,2s

instead of HHM
2s,G(C)t′Σ,l+1,2s

itself. Indeed, one has

D2s,G(C)t′Σ,l+1,2s
(k0,v) 6= ∅, v ∈ Σ. Since D2s,G(C)t′Σ,l+1,2s

is smooth geometrically irreducible and de-

fined over k0, the local-global principle yields D2s,G(C)t′Σ,l+1,2s
(kΣ

0 ) 6= ∅ or, equivalently,

HHM
2s,G(C)t′Σ,l+1,2s

(kΣ
0 )noob 6= ∅. �

17



Remark 4.2 Existentially closed extension analog Recall a field k0 is said to be existentially closed in a regular
extension k/k0 if for any smooth geometrically irreducible k0-variety V , V (k) 6= ∅ entails V (k0) 6= ∅. For instance a large
field k0 is existentially closed in k0((X))/k0 [P96]. Thus, an analog of proposition 4.1 can be stated for this situation,
more precisely:Let k0 be a field existentially closed in a regular extension k/k0. Fix a finite group G, a symmetric 2s-tuple
C = [C1, ..., Cs] ∈ C2s(G) and an integer 1 ≤ l ≤ 2s. Assume (Trans) and

(LocReal) There exists a HM G-cover defined over k with invariants G, C and branch points

t′ ∈ U2s(k0) such that Q(C, t′l+1,2s) ⊂ k0.

Then there exists a HM G-cover f defined over k0 with invariants G,C and branch points (t′f , t
′
l+1,2s) (where tf ∈ Ul(k0)

depends on f).

4.1.2 For a projective system of finite groups

The above strategy can also be developped for a complete projective system of finite groups (sk+1 :
Gk+1 ։ Gk)k≥0. Indeed, assume there exists a projective system (Ck = [Ck,1, ..., Ck,s])k≥0 of symmet-
ric tuples (resp. rational union of conjugacy classes) Ck ∈ C2sk

(Gk) and an integer 1 ≤ l ≤ 2s0 such
that (C1) and (C2) from theorem 2.2 are satisfied at each level k ≥ 0. Then (H

′HM
2sk+1,Gk+1

(Ck+1) →

H
′HM
2sk,Gk

(Ck))k≥0 (resp. (HHM
2sk+1,Gk+1

(Ck+1) → HHM
2sk,Gk

(Ck))k≥0) is a tower of geometrically irre-

ducible varieties defined over ∪k≥0Q
′
Ck

(resp. over Q) such that for any projective system of branch

points (t′k)k≥0
∈ lim
←−
k≥0

U2sk−l(Q) the corresponding tower (H
′HM
2sk+1,Gk+1

(Ck+1)t′k+1
→ H

′HM
2sk,Gk

(Ck)t′k)k≥0

(resp. symmetrised tower (HHM
2sk+1,Gk+1

(Ck+1)t′k+1
→ HHM

2sk,Gk
(Ck)t′k)k≥0) is a tower of geometrically

irreducible l-dimensional varieties defined over ∪k≥0Q
′
Ck

(t′k) (resp. ∪k≥0Q(Ck, t
′
k)). Theorem 4.1

of [DE03] states that, given a complete projective system of finite groups (sk+1 : Gk+1 ։ Gk)k≥0,
(Ck)k≥0 can always be built in such a way that (C1) is fulfilled for any k ≥ 0 and that, for any
henselian field λ of characteristic 0 with residue characteristic either p = 0 or p > 0 not dividing
any of the |Gk|, k ≥ 0 and containing all the prime-to-p roots of 1, lim

←−
k≥0

HHM
2sk,Gk

(Ck)(λ)noob 6= ∅. We

would like to obtain the same kind of results replacing the towers of HM-components by towers of
HM-subvarieties in order to apply the following profinite version of proposition 4.1.

Proposition 4.3 Let k0 be a global field and Σ a nonempty finite set of places. Fix a complete
projective system of finite groups (sk+1 : Gk+1 ։ Gk)k≥0, a projective system of symmetric tuples
(Ck = [Ck,1, ..., Ck,s])k≥0 and an integer 1 ≤ l ≤ 2s0. Assume

(Trans) All the HM-representatives fall in one single orbit OHM (Ck) ∈ sni(Ck)/SH2sk

and Πl,2sk
acts transitively on this orbit, k ≥ 0.

(LocReal) For all k ≥ 0, there exists t′Σ,l+1,2sk
∈ U2sk−l(k0) such that Q(C, t′Σ,l+1,2sk

) ⊂ k0 and

for each v ∈ Σ, there exists a HM G-cover fk defined over k0v with invariants Gk, Ck,
(t′fk

, t′Σ,l+1,2sk
) (where tk ∈ Ul(k0v) depends on fk).

Then for each k ≥ 0 there exists a HM G-cover f defined over kΣ
0 with invariants Gk, Ck and branch

points (t′fk
, t′Σ,l+1,2sk

) (where tfk
∈ Ul(k

Σ
0 ) depends on fk).

We will deal with modular towers [F95] and some towers of Hurwitz spaces associated with modular
towers we call associated central towers. The end of this section is devoted to describing the construc-
tion of these objects which are the main motivation for proposition 2.6 and example 2.7.

a/ Modular towers: Fix a finite group G and a prime number p dividing |G|. Consider then the
universal p-Frattini cover of G, pφ̃ :p G̃ → G. Since ker(pφ̃) is a free pro-p group, its Frattini series,
defined inductively by ker0 = ker(pφ̃), ker1 = kerp

0 [ker0, ker0], ..., keri = kerpi−1[kern, kern], ..., is a
fundamental system of neighbourhoods of 1. This provides a complete projective system of finite
groups (sk+1 :k+1

p G̃ ։k
p G̃)k≥0 with k

pG̃ :=p G̃/kerk, k ≥ 0 such that pG̃ = lim
←−
k≥0

k
pG̃. Furthermore,
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for any k ≥ 0 and any p’-conjugacy class Ck of k
pG̃, there exists a unique conjugacy class Ck+1 of

k+1
p G̃ above Ck with o(Ck+1) = o(Ck) [F95], lemma 3.7. As a result, if G is p-perfect, any tuple

of p’-conjugacy classes C0 = (C0,1, ..., C0,r) ∈ Cr(G) with hm([C0]) 6= ∅ defines a unique projective
system (Ck = (Ck,1, ..., Ck,r))k≥0 such that for all k ≥ 0, o(Ck,i) = o(Ck,0), i = 1, ..., r, hm([Ck]) 6= ∅
(Frattini property) and Ck has the same rationality properties as C0

3. The corresponding projective
system of HM-varieties

(H
′HM
2r,k+1

p G̃
([Ck+1]) → H

′HM
2r,kpG̃

([Ck])k≥0

is called the HM-modular tower associated with the data (G, [C0], p). As usual, (HHM
2r,k+1

p G̃
([Ck+1]) →

HHM
2r,kpG̃

([Ck])k≥0 will be called the symmetrised HM-modular tower associated with the data (G, [C0], p).

b/ Associated central towers: We keep the above notation, assuming furthermore that G is q-
perfect for some prime q 6= p dividing |G|. Denote by q̂ the functor ”universal q-central extension”

and consider the projective system (q̂si+1 : ̂q(k+1
p G̃) ։ q̂(kpG̃))k≥0. For each k ≥ 0 let Ak be the set of

all symmetric 2r-tuples of conjugacy classes of q̂(kpG̃) above [Ck]. Then (q̂sk+1 : Ak+1 → Ak)k≥0 is a
projective system of non empty finite sets, so its projective limit is non empty. In other words, there

exists a projective system (q̂[Ck])k≥0 of symmetric g-complete 2r-tuples of conjugacy classes above
([Ck])k≥0. Such a system defines a tower of Hurwitz spaces covering the HM-modular tower associ-
ated with the data (G, [C], p) we call an associated q-central tower. It cannot be defined uniquely in
general except if C0,1, ..., C0,r (and thus, Ck,1, ..., Ck,r, k ≥ 0) are also q’-conjugacy classes, in which
case, by Schur-Zassenhauss, the associated q-central tower can be defined uniquely with, furthermore,

the property that q̂[Ck]) has the same rationality property as [Ck], k ≥ 0 and, consequently that the
associated q-central tower is defined over the same field as the original modular tower. In general,
if the original modular tower is defined over k ⊂ Q, an associated q-central tower is defined over a

subfield of k(e
2πi

e(M(G))q ) where e(M(G))q denotes the q-part of the exponent of the Schur multiplier
M(G) of G. Indeed, one has e(M(kpG̃)| e(kpG̃) with e(kpG̃) = prke(G) thus e(M(kpG̃))q = e(M(G))q .

If G is perfect, one can carry out the same construction with the functor ”universal central exten-
sion”, ̂, but the resulting associated central towers are not necessarily defined over a finite extension
of k since {e(M(kpG̃))}k≥0 is not necessarily bounded.

Theorem 2.2 and proposition 2.2 give group-theoretical conditions to ensure the transitivity condi-
tion (Trans) holds. Sections 4.2 and 4.3 are devoted to prove the local realization condition LocReal
for fields like R, Qp. As a result we can give explicit forms of propositions 4.1 and 4.3: theorems 4.5
and 4.6. Theorems 1 and 2 from the introduction are special cases of these results.

4.2 (RIGP/t2 ⊂ t) over QΣ

4.2.1 G-covers over a complete field of characteristic 0

We start with a preliminary paragraph about the regular realization of finite groups over complete
fields satisfying some additional technical conditions that we will need for our construction.

Let k be a complete discrete valued field of characteristic 0 and of residue characteristic p. The
main tools to deal with G-covers over k are formal geometry [H87] or rigid geometry [L95], [P94].
Given a symmetric 2s-tuple C = [C1, , ..., Cs] ∈ C2s(G), these methods provide a construction of G-
covers defined over Qp with invariants G, C, t ∈ U2s(Q). However, it is not obvious these G-covers
are HM G-covers - and, in general, they are not. For a prime p not dividing |G|, some technical

3Indeed, for any k ≥ 1, [kpG̃ : G] = prk so, for any q ≥ 1, q is prime to |kpG̃| if and only if q is prime to |G|. As a

result, for any q ≥ 1 prime to |kpG̃| and for any 1 ≤ j ≤ r, Cq
k,j is the only conjugacy class above Cq

j with elements of
the same order as those of Cq

j . In particular, for any q ≥ 1 prime to |G|, if σq ∈ Sr verifies Cq = (Cσq(1), ..., Cσq(r)) then
Cq

k = (Ck,σq(1), ..., Ck,σq(s)).
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assumptions on the branch points - conditions (*) and (**) below - are necessary to ensure they are
[DE03] and for primes p dividing |G|, the problem remains open (because of the possible bad reduction
of Hurwitz spaces for these primes). Suppose given t = {x1, y1, ..., xs, ys} ∈ U2s(k) and consider the
conditions

(*) xi, yi lie in the same coset, i = 1, ..., s and x1, ..., xs lie in pairwise distinct cosets.

(**) |xi − yi| < |xi − xj ||p|
1

p−1 , 1 ≤ i 6= j ≤ s (with the convention |p|
1

p−1 = 1 if p = 0).

where a, b ∈ k lie in the same coset means that either |a|, |b| ≤ 1 and |a − b| < 1 or |a|, |b| > 1. We

will sometimes write ζn := e
2πi
n , n ≥ 2 in the following.

Our purpose here is to build HM G-covers defined over k, with a k-rational unramified point the
fiber above which is totally k-rational and with a Q-rational branch point divisor or - at least - a
k0-rational branch point divisor where k0/Q is an explicitely computable cyclotomic finite extension.
If we impose for instance that (x1, ..., xt) ∈ U t(Q) then the second part of condition (*) can’t be
satisfied if t > p+ 1. This difficulty can be overcome by adjoining roots of 1 to k; we explain precisely
how below (Lemma 4.4).

The statement and proof of lemma 4.4 being rather technical, we first explain how we are going to
proceed. As usual, the method consists in glueing cyclic G-covers in an appropriate way. We are going
to use the rigid glueing procedure; in order to obtain HM G-covers, consider the two cyclic G-covers fi :
Xi → P1

Q
with group< gi >:= Z/niZ, inertia canonical invariant ({g

ǫui,j

i }, {g−ǫui,j})j=1,...,φ(n
mi
i )/2, ǫ=±1

and branch points (xǫi,j := ai + ζ
ǫui,j

n
mi
i

, yǫi,j := ai + a+ ζ
−ǫui,j

n
mi
i

)j=1,...,φ(n
mi
i )/2, ǫ=±1), i = 1, 2 where a ∈ Q

is chosen in such a way that |a| < min{1, |p|
1

p−1 } and (Z/nmi
i Z)⋆ = {±ui,j}j=1,...,φ(n

mi
i )/2, i = 1, 2 (here

m1,m2 ≥ 1 are two integers; we will specify their value later). Each of these two G-covers is defined
over Q with a Q-rational unramified point the fiber of which is totally Q-rational [Des95] and is a HM
G-cover. But to assert the G-cover obtained by glueing f1×Q k and f2×Q k will still be a HM G-cover,
we have to check that (xǫi,j , y

ǫ
i,j) j=1,...,φ(ni)/2, ǫ=±1

i=1,2

verify conditions (*) and (**) as well. This will occur

for instance if |a1|, |a2|, |a1 − a2| < 1 (where a1, a2 ∈ Q are just translation terms) when nm1
1 6= nm2

2 .
So we just have to choose m1,m2 ≥ 1, a1, a2 ∈ Q this way. Consequently, given any integer m ≥ 1,
we will denote by Ratm the rationalization operator which to each conjugacy class C of a finite group
G associates the rational union of conjugacy classes

Ratm(C) := (Cǫui , C−ǫui)i=1,...,φ(o(C)m)/2, ǫ=±1

where {±ui}1≤i≤φ(o(C)m)/2 = (Z/o(C)mZ)⋆. Likewise, given any tuple m = (m1, ...,mt) ∈ N \ {0}, let
Ratm be the rationalization operator which to any tuple C = (C1, ..., Ct) ∈ Ct(G) associates the tuple

Ratm(C) := (Ratm1(C1), ...,Ratmt(Ct)).

We now state lemma 4.4 and give its proof, which is just a slight adjustement of the method
described above.

Lemma 4.4 Let G be a finite group and C = (C1, ..., Ct) ∈ Ct(G). Assume that p 6 | |G|, k contains all
the o(C1)th roots of 1. Choose m = (m2, ...,mt) ∈ N \ {0} such that o(Ci)

mi 6= o(Cj)
mj , 2 ≤ i 6= j ≤ t

and write r := l(Ratm(C2, ..., Ct)). Then there exists a branch point tuple t′ ∈ Ur+2(Q) verifying
conditions (*), (**) and t′1,2 ∈ U2(Q), t′3,r+2 ∈ Ur(Q). And, for any such branch point tuple, there
exist HM G-covers defined over k with invariants G, ([C1],Ratm(C2, ..., Ct)), t′.

Proof Write oi := o(Ci) and choose gi ∈ Ci, i = 1, ..., t. Then for any a1, b1 ∈ Q, the G-cover
f1 : X1 → P1

Q
with group < g1 >, inertia canonical invariant ({g1}, {g

−1
1 }) and associated branch
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points (x1 := a1, y1 := b1) is defined over Q(ζo1) and has a Q(ζo1)-rational unramified point the fiber
of which is totally Q(ζo1)-rational. Likewise, for each 2 ≤ i ≤ t, write

Ratmi(Ci) = ((C
ui,j

i , C
−ui,j

i )ǫ=±1)j=1,...,φ(o
mi
i /2)

Then, for any ai, bi ∈ Q, any G-cover fi : Xi → P1
Q

with group < gi >, inertia canonical in-

variant ({g
ui,j

i }, {g
−ui,j

i })ǫ=±1)1≤j≤φ(o
mi
i )/2 and associated branch points ((xǫi,j = ai + ζ

ǫui,j

o
mi
i

, yǫi,j =

bi + ζ
−ǫui,j

o
mi
i

)ǫ=±1)1≤j≤φ(o
mi
i )/2 is defined over Q and has a Q-rational unramified point the fiber of

which is totally Q-rational. Choose futhermore (ai)1≤i≤t ∈ Qt in such a way that |ai| < 1 and

|ai − aj| < 1, 1 ≤ i 6= j ≤ t and, given a ∈ Q such that |a| <min{1, |p|
1

p−1 } set bi := ai + a, i = 1, ..., t.
With N :=

∏
2≤i≤t o

mi
i , by assumption p 6 |N and, from this, one easily check condition (*) and (**)

are both fulfilled by t′ := ((x1, y1), ((x
ǫ
i,j , y

ǫ
i,j)j=1,...,φ(o

mi
i )/2)t0+1≤i≤t, ǫ=±1). Condition (**) allows us

to glue together - via rigid geometry - the G-covers f1 ×Q(ζo1) k and (fi ×Q k)2≤i≤t to get a G-cover

f : X → P1
k defined over k with group G, inertia canonical invariant ([C1],Ratm(C2, ..., Ct)) and

branch points t′. Condition (*) combined with [DE03], proposition 2.3 and theorem 1.4 shows that
the G-cover f : X → P1

k is actually a HM-cover.�

4.2.2 Results

To avoid rationality problems, we only deal, in this section, with fields containing enough roots of 1
and HM-curves. The following statements and proofs can be adjusted for fields without roots of 1
and to HM-subvarieties of arbitrary dimensions. We refer to §4.4.2.3. of [C04b] for details about this
matter.

Theorem 4.5 Let G be a finite group containing n + 1 conjucacy classes A, B = (B1, ..., Bn) such
that A = (A), B verify (H1) and (H2) from theorem 2.2. Set kA := Q(ζo(A)) and write

Cs := ([A],Ratm(Bs)) rs := l(Cs)

where m = (m1, ...,mns) ∈ N \ {0}ns is any tuple such that o(Bi)
mi+kn 6= o(Bj)

mj+ln , (i, k) 6= (j, l),
0 ≤ i, j ≤ n, 1 ≤ k, l ≤ s−1. Then, for s large enough, H

′HM
rs,G

(Cs) is a geometrically irreducible variety

and, for any t′ ∈ Urs−1(Q) the HM-curve H
′HM
rs,G

(Cs)t′ remains geometrically irreducible. Furthermore,
for any finite set Σ of (non archimedean) places of kA of residue characteristic not dividing |G|, there
exists t′Σ ∈ Urs−1(Q) with tΣ ∈ Urs−1(Q) and such that the corresponding symmetrised HM-curve
HHM
rs,G

(Cs)t′Σ is defined over kA with the property that

HHM
rs,G(Cs)t′Σ(kΣ

A)noob 6= ∅.

Proof. According to theorem 2.2, for s large enough Cs verifies condition (Trans) of proposition 4.1
(since ([A], [B]s) already does) so we are only left to check condition (LocReal). Writing Σ ∩ Q =
{p1, ..., pr}, re-use the notation of lemma 4.4 and take for instance ai = (p1 · · · pr)

i, i = 1, ..., ns + 1,
a := (p1 · · · pr)

n with n >max{ 1
pi−1}1≤i≤r. These satisfy the conditions |ai|p < 1, |ai − aj |p < 1 and

|a|p < |p|
1

p−1 for all p ∈ Σ, 1 ≤ i 6= j ≤ r0s . Set

x1 := a1, y1 := a1 + a

xǫi+kn,j := ai+kn,j + ζ
ǫui+kn,j

o(Bi)mi

yǫi+kn,j := ai+kn,j + a+ ζ
−ǫui+kn,j

o(Bi)mi

for ǫ = ±1, j = 1, ..., φ(o(Bi)
mi+kn)/2, 1 ≤ i ≤ n, 1 ≤ k ≤ s− 1

and
t′1 := (x1, y1),
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t′k+1 := ((xǫi+kn,j, y
ǫ
i+kn,j)ǫ=±1) j=1,...,φ(o(Bi)

mi+kn)/2
i=1,...,n

, for 1 ≤ k ≤ s− 1.

Then, writing t′Σ := (t′1, (t
′
k+1)1≤k≤s−1) conclude thanks to lemma 4.4 that for each P ∈ Σ there exists

a HM-G-cover defined over (kA)P with invariantsG, Cs, t
′ with t′2,rs = t′Σ that is, HHM

rs,G
(Cs)t′Σ(kP )noob 6=

∅. By the branch cycle argument, HHM
rs,G

(Cs)t′Σ is defined over kA. Thus, as in the proof of propo-
sition 4.1 applying the local-global principle to the global descent variety yields the announced result.�

In terms of G-covers, theorem 4.5 means that for s large enough there exists HM-G-covers (f, α)
defined over kΣ

A, with invariants G, Cs, tf where tf can be written tf = {t1,f}+tΣ with tΣ ∈ Urs−1(Q).
For instance, take for G any group of section 2.3.2 (1), (2), (3).

Combining proposition 2.6 and the constructions of section 4.1.2 yields the following profinite
version of theorem 4.5

Theorem 4.6 Let G be a finite group and p a prime number dividing |G|. Assume G contains n+ 1
p’-conjugacy classes A, B = (B1, ..., Bn) such that A = (A), B verify (H1.1+), (H1.2+) and (H2)
from proposition 2.6 (for instance, assume G, A, B verify conditions (i), (ii) and (iii) of corollary
2.3). Set kA := Q(ζo(A)) and write

Cs := ([A],Ratm(Bs)) rs := l(Cs)

where m = (m1, ...,mns) ∈ N \ {0}ns is such that o(Bi)
mi+kn 6= o(Bj)

mj+ln , (i, k) 6= (j, l), 0 ≤
i, j ≤ n, 1 ≤ k, l ≤ s − 1. Then, for s large enough, the HM-modular tower (H

′HM
rs,

k+1
p G̃

(Ck+1,s) →

H
′HM
rs,kpG̃

(Ck,s))k≥0 is a tower of geometrically irreducible varieties and, for any t′ ∈ Urs−1(Q),

(H
′HM
rs,

k+1
p G̃

(Ck+1,s)t′ → H
′HM
rs,kpG̃

(Ck,s)t′)k≥0 is a tower of HM-curves which are still geometrically irre-

ducible. Furthermore, for any finite set Σ of (non archimedean) places of kA of residue characteristic
not dividing |G|, there exists t′Σ ∈ Urs−1(Q) with tΣ ∈ Urs−1(Q) and such that the corresponding
tower of symmetrised HM-curves (HHM

rs,
k+1
p G̃

(Ck+1,s)t′Σ → HHM
rs,kpG̃

(Ck,s)t′Σ)k≥0 is defined over kA with

the property that

lim
←−
k≥0

HHM
rs,kpG̃

(Ck,s)t′Σ((kA)P )noob 6= ∅, P ∈ Σ and HHM
rs,G(Cs)t′Σ(kΣ

A)noob 6= ∅.

This conclusion still holds (with the same s and t′Σ) for any associated q-central tower (for primes
q 6= p dividing |G| and such that G is q perfect) replacing e(G) by e(G)e(G)q .

Proof. According to proposition 2.6, for s large enough and for all k ≥ 0, Ck,s (resp. q̂Ck,s) verifies

(C1), (C2) that is, H
′HM
rs,kpG̃

(Ck,s)t′Σ (resp. H
′HM

rs,
dq k
pG̃

(q̂Ck,s)t′Σ) is a geometrically irreducible HM-curve.

Consider the t′ ∈ Urs(Q), t′Σ ∈ Urs−1(Q) built in the proof of theorem 4.5. Then, for any P ∈ Σ,

HHM
rs,kpG̃

(Ck,s)t′Σ(kP )noob 6= ∅ (resp. HHM

rs,
dq k
pG̃

(q̂Ck,s)t′Σ(kP )noob 6= ∅) and these sets being finite, their

inverse limit is non-empty. The second part of the conclusion is obtained, once again, using the local-
global principle and the global descent varieties. �

In terms of G-covers, theorem 4.6 means that for s large enough and for all k ≥ 0 there exists HM-G-
covers (fk, αk) defined over kΣ

A, with invariants kpG̃, Ck,s, tfk
where tfk

can be written tfk
= {t1,fk

}+tΣ

with tΣ ∈ Urs−1(Q).

Example 4.7 Let us consider for instance M11 (cf. section 2.3.2 (2)). Take A = (8A), B = (11A) and, with the
notation of theorem 4.6, let (Hk+1,s → Hk,s)k≥0 be the HM-modular tower associated with the data (M11,Cs, 3) and
write Ck,s,Σ := (Hk,s)t′

Σ
, k ≥ 0 for the resulting symmetrised HM-curves. Since 5 does not divide 8, 11, by Schur-

Zassenhauss, there exists a unique conjugacy class 5̂(8A)k (resp. ̂5(11A)k) lifting (8A)k (resp. (11A)k) in 5̂ k
pG̃ with
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o(5̂(8A)k) = 8 (resp. o( ̂5(11A)k) = 11). This defines uniquely an associated 5-central tower ( c5Hk+1,s → c5Hk,s)k≥0

defined over the same field k := Q(i
√

2) as (Hk+1,s → Hk,s)k≥0; write c5Ck,s,Σ := ( c5Hk,s)t′
Σ
, k ≥ 0 for the resulting

curves. The following commutative diagram defined over k summarizes the situation

c5Ck,s,Σ
�

�

//

zztt
t
t
t
t
t
t
t

��

c5Hk+1,s

zztt
t
t
t
t
t
t
t

��

Ck+1,s,Σ

��

�

�

// Hk+1,s

��

c5Ck,s,Σ
�

�

//

zztt
t
t
t
t
t
t
t

c5Hk,s

zztt
t
t
t
t
t
t
t

Ck,s,Σ
�

�

// Hk,s

Theorem 4.6 then means that the non obstruction locus of the left side of this diagram carries (double) projective systems

of kP -points for each P ∈ Σ and that Ck,s,Σ(kΣ)noob 6= ∅, c5Ck,s,Σ(kΣ)noob 6= ∅, k ≥ 0.

4.3 (RIGP/t2 ⊂ t) over Qtr

4.3.1 G-covers defined over R

We first recall succintly the description of G-covers defined over R with prescribed invariants given in
[DF94]. We will use it in the next paragraph.

Let t′ ∈ Ur(Q) be an r-tuple consisting of r = r1 +2r2 branch points in configuration (r1, r2), that
is with - r1 real branch points t1, ..., tr1 .

- r2 complex conjugated pairs {zi, zi} ⊂ P1(C)\P1(R) with zi = tr1+i−1,
zi = tr1+i, i = 1, ..., r2.

and assume that t1 < ... < tr1 , Re(z1) < ... < Re(zr2). Then there exists a standard ordered topological
bouquet γ = (γ1, ..., γr) for P1(C) \ t such that complex conjugation c ∈ ΓR acts by

- cγi = (γ−1
i )(γ1···γi−1), i = 1, ..., r1

- cγr1+2i−1 = (γ−1
r1+2i)

(γ1···γr1 ), i = 1, ..., r2
Let G be a finite group and C = (C1, ..., Cr) ∈ Cr(G). Define the subset sniR(C; r1, r2) of sni(C)

consisting of those (g1, ..., gr) in sni(C) verifying the additional condition:
(4) there exists an involution g0 ∈ G such that - gg0i = (g−1

i )(g1···gi−1)
−1

, i = 1, ..., r1
- gg0r1+2i−1 = (g−1

r1+2i)
(g1···gr1 ), i = 1, ..., r2

Write sni
R
(C; r1, r2) for the corresponding quotient set modulo the componentwise action of Inn(G).

Then, BCDγ defines an identification (Ψ′
r,G)−1(t′) ≃ sni(C) such that sni

R
(C; r1, r2) corresponds to

those G-covers in sni(C) which are defined over R.

4.3.2 Statements and applications

We will use here a variant Rat of the rationalization operator Rat0 introduced in paragraph 4.2.1.
Namely, Rat(C) := (Cu1, C−u1 , ..., Cur , C−ur) if {Cu}u∈(Z/o(C)Z)⋆ = {C±ui}i=1,...,r

Theorem 4.8 Let G be a finite group containing two tuples A = (A1, ..., Am), B = (B1, ..., Bn) verify-
ing (H1) and (H2). Write Cs := (Rat(A),Rat(B)s) and r :=

∑m
k=1 |Rat(Ak)|, rs := s

∑n
k=1 |Rat(Bk)|.

Then, for s large enough, HHM
rs,G

(Cs) is a geometrically irreducible Q-variety and there exists t′R ∈

Urs−r(Q) with a Q-rational associated divisor tR ∈ Urs−r(Q) and such that the symmetrised HM-
subvariety HHM

rs,G
(Cs)t′

R
is a geometrically irreducible r-dimensional Q-variety with,

HHM
rs,G(Cs)t′

R
(Qtr)noob 6= ∅
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Proof. As in the proof of theorem 4.5, we are only to show HHM
rs,G

(Cs)t′
R
(R)noob 6= ∅. For this, apply

the following procedure (with the notation of section 4.2.1): given a non trivial conjugacy class C
(1) - If o(C) = 2, associate to C the tuple t′C := (i,−i).

- If o(C > 2), associate to C the tuple t′C := (ζu1

o(C), ζ
−u1

o(C), ..., ζ
uφ(o(C))/2

o(C) , ζ
−uφ(o(C))/2

o(C) ).

(2) Set t′ := (t′1,r, t
′
r+1,rs) with t′1,r = (t′Ai

+ 4(i − 1))i=1,...,m and t′r+1,rs = ((t′Bi
+ 4(i − 1))i=1,...,n) +

4(m+ jn))j=0,...,s−1.
Then, t′ ∈ Urs(Q) is in configuration (0, rs/2) and since ∅ 6= hm(Cs) ⊂ sniR(Cs; 0, rs/2), we obtain
HHM
rs,G

(Cs)t′(R)noob 6= ∅. Set t′R := t′r+1,rs , which satisfies t′R ∈ Urs−r(Q). Then, by the branch cycle

argument, HHM
rs,G

(Cs)t′
R

is defined over Q and conclude applying the local-global principle to the asso-
ciated global descent variety as in the proof of proposition 4.1. �

As in section 4.2.2, one can state a profinite version of theorem 4.8 for modular towers and asso-
ciated q-central towers; we leave this to the reader and give another application of our method to the
profinite regular inverse Galois problem over Qtr (see also [C04a]).

Let (sk+1 : Gk+1 ։ Gk) be a complete projective system of finite groups and (Ck = (Ck,1, ..., Ck,r))k≥0

a projective system of tuples Ck ∈ Cr(Gk). Assume there exists r1, r2 ≥ 0 with r = r1 + 2r2 and

(∗) For all m ≥ 1 such that (m, e(G)) = 1, s−1
k+1(sni

R
(Ck; r1, r2)) ⊂ sni

R
(Ck+1; r1, r2)

Lemma 4.9 Assume there exists a Qtr-G-cover (f0, α0) with invariants G0, C0, t′ such that σt′is
in configuration (r1, r2), σ ∈ ΓQ. Then there exists a regular realization of lim

←−
k≥0

Gk over Qtr with

invariants lim
←−
k≥0

Ck, t′.

Proof. Let p0 ∈ Hr,G0(C0)t(Q
tr)noob and (fk, αk)k≥0 a projective system of G-covers corresponding to

a projective system of points (pk)k≥0 ∈ lim
←−
k≥0

Hr,Gk
(Ck)t above p0. For any σ ∈ ΓQ, by the branch cycle

argument, σ(pk)k≥0 ∈ lim
←−
k≥0

Hr,Gk
(C

χ(σ)
k )t. Furthermore, since (f0, α0) is defined over Qtr, σ(f0, α0) is

defined over R with branch points σt′ in configuration (r1, r2) so, its branch cycle description lies in

sni
R
(C0; r1, r2). The branch cycle description of σ(fk, αk) lies in sni(Ck) above the one of σ(f0, α0)

so, according to (*), in sni
R
(Ck; r1, r2). As a result, σ(fk, αk) is defined over R. Now, let D(fk, αk)

be the descent variety of (fk, αk) [DDoMo04]; it is a smooth geometrically irreducible R-variety such
that for any σ ∈ ΓQ

σD(fk, αk)(R) = D(σ(fk, αk))(R) 6= ∅. Apply then the local-global principle to
show D(fk, αk)(Q

tr) 6= ∅; that is, (fk, αk) is defined over Qtr. Conclude using §5.3.1 of [C04b]. �

Example 4.10 Let D2a∞ := lim
←−
k≥1

D2ak be the prodihedral group of order 2a∞ where

D2ak :=< u, v| uak

= v2 = 1, vuv = u−1 >

For any k ≥ 1, let Ak,i be the conjugacy class of ui in D2ak , i = 1, ..., [ak + 1)/2] and Bk be the conjugacy class of v in
D2ak . Then check that for any 1 ≤ i1, ..., it ≤ [ak+1)/2] condition (*) is fulfilled with Ck := ([Bk], [Ak,i1 , ..., Ak,it ]), k ≥ 1
(cf [C04b]). To prove the existence of (f1, α1) as in the lemma, we re-use the idea (and the notation!) of the proof of
theorem 4.8 as follows: observe that A := (B1), B := (A1,1) verify (H1) and (H2) so, with C1 := Cs, for s large enough
and for any t′3,rs

∈ Urs−1(Q), HHM
rs,D2a

(C1)t′3,rs
is a geometrically irreducible curve. Let t′3,rs

∈ Urs−2(Q) built as in the

proof of theorem 4.8 then, since B is rational (o(B) = 2), HHM
rs,D2a

(C1)(0,t′3,rs
) is defined over Q. According to section

4.3.1, HHM
rs,D2a

(C1)(0,t′3,rs
)(R)noob 6= ∅ so, applying once again the local-global principle to the global descent variety,

HHM
rs,D2a

(C1)(0,t′3,rs
)(Q

tr)noob 6= ∅ and, if (f1, α1) is a G-cover corresponding to a point p1 ∈ HHM
rs,D2a

(C1)(0,t′3,rs
)(Q

tr)noob,

its branch point divisor is of the form (t1, 0, )t
′
2,rs

that is in configuration (2, rs/2 − 1) and satisfying the hypothesis of
lemma 4.9. Conclude, by applying this lemma, that there exists regular realization of D2a∞ over Qtr with invariants
lim
←−
k≥0

([Bk], [Au1
k,1, ..., A

uφ(a)/2

k,1 ]), (t1, 0, t
′
3,rs

).
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[DDoMo04] P.Dèbes,J.-C.Douai, L. Moret-Bailly, Descent varieties for algebraic covers, J. fur die reine und angew.
Math. 574, p. 51-78, 2004.
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