RELAXATION APPROXIMATION OF SOME INITTIAL-BOUNDARY
VALUE PROBLEM FOR P-SYSTEMS *
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Abstract. We consider the Suliciu model which is a relaxation approximation of the p-system.
In the case of the Dirichlet boundary condition we prove that the local smooth solution of the
p-system is the zero limit of the Suliciu model solutions.
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1. Introduction
We study a relaxation approximation of the following p-system

8“,61 — 8xU2 = O7

(1.1)
815“42 — @cp(ul) =0.

For the viscoelastic case, Suliciu introduces in [19] the following approximation

8tul — 8xU2 = O7

Opuz — 0,0 =0, (1.2)

1
Opv — Oz uz = z (p(u1) —v),

where € and p are positive.

The aim of this paper is to prove convergence results for the initial-boundary value
problem when the relaxation coefficient € tends to zero.

Under the classical assumption

VEER,P'(€) >0, (1.3)

the p-system is strictly hyperbolic with eigenvalues

At(u1) =—=V/p' (u1) <As(u1) =/p'(u1). (1.4)

The semi-linear approximation system (1.2) is strictly hyperbolic with 3 constant
eigenvalues

p=—r<p2=0<pz= /1. (1.5)

In all the paper we assume that p is chosen great enough so that the subcharacteristic-
type condition holds

> p'(ur) (1.6)
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2 Relaxation Approximation for p-Systems

for all the values of w; under consideration.

Formally, when e tends to zero, the behaviour of the solution w®=(u®v°)=
((u§,uf),v®) for the relaxation system (1.2) is the following: p(u§)—v° tends to zero,
so that u® tends to a solution u = (u1,usz) of the p-system (1.1).

Recent papers are devoted to the zero relaxation limit in the case of the Cauchy
problem. In [22] Wen-An Yong establishes a general framework to study the strong
convergence for the smooth solutions. This convergence result is obtained describing
the boundary layer which appears at t=0. We can apply Yong’s tools for the Suliciu
approximation

Oru§ — 0yu5 =0,

atu§—8$05:07 (17)

1
Opv® — poyus = B (p(ug) —v%),

for (t,z) eR* xR, with the smooth initial data:
w®(0,2) =wo(z),z €R. (1.8)

We give more details about this question in the annex at the end of this paper.
Since the lifespan for a smooth solution u of the Cauchy problem for the p-system is
generally finite (see [12]), the strong convergence of the solution u° to u can only be
obtained locally in time. Nevertheless, under the assumption

VEERP'(§)<T<p, (1.9)

if wg is smooth, the solution for the semi-linear Cauchy problem (1.7)-(1.8) is global
and smooth. In this case, the question is: what about the global convergence ?
Under further additional assumptions (in particular p’(§) >+ >0) the weak conver-
gence to a global weak solution of the p-system is obtained by Tzavaras in [21] using
the compactness methods of [17].

Other convergence results in some particular cases can be found in [8] and [10].

For other connected papers see also [13, 16, 20]...

In this paper we study the zero relaxation limit for the initial-boundary value prob-
lem. To our knowledge general convergence results are not available for hyperbolic
relaxation systems in domains with boundary in the literature. A special well inves-
tigated problem is the semi-linear relaxation approximation to the boundary value
problem for a scalar quasilinear equation, see [11, 15, 9, 14], and [5, 1] for related
numerical considerations.

A first example of convergence result for a particular p-system (1.1) is obtained in [4].
In that paper the p-system is the one-dimensionnal Kerr model, so p is the inverse
function of &+ (1+&2)€. The relaxation approximation is given by the Kerr-Debye
model which is the following quasilinear hyperbolic system

Oru§ — O0yus =0,

Opus — Oy ((1+v5)_1u§) =0,

a_l e\ — eN2 _ &
O —6((1+v) 2(u])? —v%).
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For these two models we consider the ingoing wave boundary condition. In the case
of the smooth solutions we obtained a local strong convergence result. The main tool
of the proof is the use of the entropic variables as proposed in [7]. In these variables,
the system is symmetrized and the equilibrium manifold is linearized.

Here we study the zero relaxation limit for the Suliciu approximation

Opui —0zus =0,

Orus — 0,v° =0, (1.10)

0" = 05 =~ (p(u) — ),
for (t,x) e R* x R, with the null initial data
w®(0,2)=0,7 €RT, (1.11)
and with the Dirichlet boundary condition
u5(t,0)=¢(t),teRT. (1.12)

For the null initial data to be in equilibrium we assume that p(0)=0. We prove the
strong convergence of u° to the smooth solution of the initial-boundary value problem
for the p-system

8,5111 — 83;71/2 = 07
(1.13)
dyuz — Ogp(u1) =0,
for (t,x) e R* x R*, with the initial-boundary conditions
u(0,7) =0,z €RT, (1.14)
ua(t,0) =¢(t),t eRT. (1.15)

2. Main Results
Let us specify the assumptions on the source term ¢ in the boundary condition (1.12)
or (1.15). In order to simplify we chose ¢ smooth enough on R and such that supp
©C[0,b], with b>0. In this case the boundary conditions and the null initial data
(1.11) and (1.14) match each other so both initial-boundary value problem (1.10)-
(1.11)-(1.12) and (1.13)-(1.14)-(1.15) admit local smooth solutions.

First we consider the solutions for the second problem (1.13)-(1.14)-(1.15) and using
the methods of [12] we establish that the lifespan T* is generally finite with formation
of shock waves.

THEOREM 2.1. Assume the property (1.3). Let ¢ € C=(R) with supp ¢ C[0,b], b>0,
p#0. Let g the function defined by

3
o(6)= / VI (s)ds.

We assume that

p" does not vanish on the interval g~ (—p(R)). (2.1)
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Then the local smooth solution of (1.13)-(1.14)-(1.15) exhibits a shock wave at the
time T* <400 and we have

1wl Lo (o, 7+ xR +) < Clll oo (R)- (2.2)

We now investigate the smooth solutions of the initial-boundary value problem (1.10)-
(1.11)-(1.12) for a fixed € >0. The system is semi-linear strictly hyperbolic and the
boundary {x =0} is characteristic. It is easy to prove that the local smooth solution
w exists and, if the lifespan T is finite, we have

l[wll oo (jo,72] xR +) = +00 (2.3)

(for general semi-linear hyperbolic systems, see [18]).

If we assume that p is globally lipschitz we establish that the smooth solutions are
global.

THEOREM 2.2. Assume the properties (1.8) and (1.9). Let p€ H*(R) with supp
@ CR*. Then the solution of (1.10)-(1.11)-(1.12) is global and

weCY'(RT; H(R)), 9;w € CO(RT; L*(R)). (2.4)

Finally, let us describe the convergence result.

THEOREM 2.3. We suppose (1.3). Let o € H3(R) with supp o CRT. We consider
a smooth solution u= (ul,uy) of (1.18)-(1.14)-(1.15) defined on [0,T*[. We suppose
that

p>  sup  pl(ul(t,@)). (2.5)
(t,z)€[0,T*[ xR+
Let T <T*. For e small enough, the relazation problem (1.10)-(1.11)-(1.12) admits
a solution w® = (u,v%) defined on [0,T) such that

uf =u’+eul,
and there exists a constant K such that

[ulll oo 0,710 () + 1040l oo 0,122y < K. (2.6)

In this result we can remark that no boundary layer appears in the time variable
because the null initial data belongs to the equilibrium manifold V= {v=p(u;)}. For
the space variable, we have the same boundary condition for both systems, so no
space boundary layer appears.

To prove Theorem 2.3 we don’t use the method in [4]: as observed in [7], with the
entropic variables, we lose the semi-linear character of the system (1.10). We prefer
write the following expansion of w®

w® = UJO +81.U51 = ((u?aug)ap(u?)) +Ew;

so that the rest term w! satisfies a semi-linear hyperbolic system. In order to esti-
mate w, we use the conservative-dissipative variables introduced in [2]. With these
variables the system is symmetrized and its semi-linear character is preserved. Fur-
thermore by this method we obtain a more precise result : for € small enough the
lifespan T is greater that the lifespan T of the limit system solution and the con-

vergence is proved on all compact subset of [0,7].
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3. Proof of Theorem 2.1

We use the methods proposed by Majda in [12] for the Cauchy problem. We denote
by [ and r the left and right Riemann invariants of the system (1.1):

These variables define a diffeomorphism which inverse is given by
w =g~ (1—7),
ug=1+r.

These invariants (I,r) satisfy the diagonal system
Ol —v(l—r)0,1=0,
r+v(l—r)0,r=0,

1(0,2) =r(0,2) =0,z >0,

(I+7)(t,0)=p(t),t >0,

where v(l—r)=+/p' (¢~ (I—7)). The smooth solution of (3.1) is (0,7) where r is the
solution of the scalar equation

Oyr +v(—r)0,T =0,
r(0,2)=0,2 >0, (3.2)

r(t,0) = p(t),t > 0.

Under the assumptions (1.3) and (2.1) we will prove that the lifespan T of the solution
of the problem (3.2) is finite and that this solution exhibits shock waves in T*.
For solving (3.2) we can use the method of characteristics. The function r is constant

1
on the characteristic curves which are the straight lines t=T+ Ww, TeR.
vi—¢

1
Denoting a(s) = ——— we obtain then that

v(—s)
r(T,0)=p(T)=r(T+a(p(T))x,z).
Let us introduce the mapping
(T, X)— (T, X)=(t,x)=(T+alp(T)X,X).

This map is a diffeomorphism for X < X with

_ d -1
X= ——_a(o(T
Lna dTa(w( )
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Under assumption (2.1) we have 0 < X < 400 and we have

7]l Loo e+ x [0, %) < NPl oo (R)-

The characteristic curves through (0,0) and (b,0) cut the straight line {x= X} at
times

Ti=/p(0) ' X and To=b+/p/(0) X so T* € [T1,Ty).
4. Proof of Theorem 2.2
In this section € >0 and g >0 are fixed. We rewrite system (1.10)

Orw~+ Adgzw=h(w)

where
0-1 0 0
A=(00 -1 ) andh(w)=|  °
0-p 0 ~(p(u1) —v)

and by (1.3) and (1.9) p is globally lipschitz. As zero is an eigenvalue of the matrix
A, the boundary {x =0} is characteristic, so for completeness we give the proof of the
global existence. Using (2.3) it is sufficient to prove that the solution w is bounded on
any domain [0,7] x RT. In a first step we lift the boundary condition (1.12). We set
w(t,z) =p(t)n(x) where n is a smooth function compactly supported with 7(0)=1.
We replace uy by us —w and we obtain the following initial-boundary value problem

Opw
Ow+ Adyw=h(w)+ | —0w |,
1Ozw
(4.1)
w(0,2) =0,z eRT,
ug(£,0)=0,t eRT.
We diagonalize the matrix A by the matrix P: w= PW with
11 1
P=|.,pn0—-/u
w0 p
We obtain
-0 0
oW + 0 00 |0, W=H(W)+2,
0 0n
(4.2)

W(0,2)=0,z € R,

Wl(t,O) — Wg(t,O) =0,t eRt.
We have H(W)=P~1h(PW) so H is globally lipschitz

3K >0,|0w H| < K. (4.3)
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In addition, @ is given by

Opw
d=P ' | —Qw
1Ozw

We denote by T* the lifespan of the solution W for system (4.2) and we assume that
T < +o0. We will prove that ||[W/||pe(jo,7+]xr+) <400 so that by (2.3) we obtain a
contradiction.

L? estimate

We take the inner product of the first equation in (4.2) by W and we obtain

1d

R+ Rt

Using the third equation in (4.2) and (4.3) we obtain
1d
§EHW”%2(R+)SO(1+||WH%2(R+))' (4.4)

H' estimate
We derivate system (4.2) with respect to ¢ and with similar computations we obtain
that

1d
2dt
By Gronwall lemma we obtain from (4.4) and (4.5) that

10:W |22y SCA+[0W |72+ ))- (4.5)

Wl Lo o, L2(re4 ) + N1OeW | Loc (0,7 L2 Ry < C(T). (4.6)

So using the first equation in (4.2) we have

0o Wil Loo (0,71 L2+ )) + 10 W | oo (0,74 L2+ )) < C(T7), (4.7)
In addition we have

8,0, W — Oy, Ha (W0, Wo = H(t,z),
where
H = Oy, Ha (W), Wy + vy, Hao (W) 0y W + 0, B
By (4.3) and (4.7) we have
[ Lo jo,7): L2 (r+)) < C(T7),

and since

t t
8$W2(t,x):/ (exp/ 8W2H2(W(T7(E))d7'> H(s,x)ds,
0 s
we conclude that
10:Wal| Loo (0,712 (m+)) < C(T7).

By Sobolev injections we can apply the continuation principle and we conclude the
proof of Theorem 2.2.
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5. Proof of Theorem 2.3
We denote by T* the lifespan of the smooth solution u° = (uf,u9) of system (1.13)-
(1.14)-(1.15). Since the boundary data ¢ belongs to H3(R) we have

ot e C([0,T*[; H3*(R™)),i=0,1,2,3. (5.1)

We define the profile w® by

w’ = (u®,0%) = ((u},u3),p(u})). (5.2)

We denote
y(t,x)=p (Wl (t,x)),t <T*, >0, (5.3)
r= sup ~(t,x), (5.4)

(t,z)€[0,T*[xR+
and by (2.2), I < +o00. We fix p such that
uw>T. (5.5)

We will construct the solution w® of the relaxation problem (1.10)-(1.11)-(1.12) writing

0
w'=uw+e| 0 | +er, (5.6)
ol
where
vl :—8tv0+u31ug, (5.7)
so that r satisfies the following system
Oyr1 — 0,2 =0,
atTQ_amTBZaz'Ula (58)

Oyrg — p10yro = é(p’(u?)rl —r3)+ F(t,x,ery)(r1)? — 00t
for (t,x) € [0,T*[xR™", with the initial-boundary conditions
r(0,7)=0,x eRT,
ra(£,0)=0,0< ¢ < T,

The function F' is defined by

F(t,x,f):/o (1—s)p" (ud(t,x)+s&)ds. (5.10)
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First step: we want to construct a suitable symmetrization for system (5.8). We
denote by A and B the matrices

0-10 0 00
A=(00 1|, B=| 0 00
0—n O ~y(t,z) 0 —1

With this object, we will use the conservative-dissipative form introduced in [2]. We
first need a symmetric positive definite matrix Ay such that AAp is a symmetric
matrix, and such that

000
BAy={00 0 | withd>0.
00—d

Following [7], such a matrix can be constructed using the entropic variables. For the
special case of the Suliciu model we have

(v(t,x)~t 01 Ao, Aoz
Ao(t,x): 0 10 | =
1 0w Ap21 Ap22
We obtain
0 -1 0 00 O
AAQ = -1 0 —K ], BAQZ 00 O 5
0 —pn O 00~vy—u

and we remark that with (5.5), we have y—~ > pu—1I"> 0. Finally we can apply Propo-
sition 2.7 in [2]: the conservative-dissipative variables p is defined by p= P(t,z)r with

(Ao11)"2 0 vz 0 0
P(t,z)= - 0 1 0
_ 14— _ 1 1 1
((Ag1)22) 72 (Ag 21 ((Ag1)22)2 (=772 0 (p—7)"2
In these variables, system (5.8) is equivalent to
1 0 0
© p3 Fl(taxﬂgpl)p%
for (t,x) €[0,T*[xR™T, with the initial-boundary conditions
p(0,7) =0 for z€R™ and ps(¢,0) =0 for t€[0,T*]. (5.12)

The matrix A; = PAP~! is symmetric
0 —n2 0
Atz)=| -2 0 —(u—7)
0 —(u—v)% 0
The matrix L is given by L(t,2)= Po;P~1+ PAJ,P~!. In addition, F; and H are
given by

[V

Fi(ta,6) =7 (u—7) T F(t,a,y"3€), (5.13)
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0
H(tax): 811}1
—(p—7)" 20!

From (5.1) we have
iy eCO([0,T*[; H3*(RT)),i=0,1,2,3, (5.14)
and using (2.2) there exists o> 0 such that
y(t,z) > a for (t,z) €[0,T*[xRT. (5.15)
Using (5.14), (5.15) and (5.5) we have

A1,0:A1,0, A, €CO([0,T*[; L= (RT)), (5.16)

L,0,L,0,LeC’([0,T*[;L>=(R™)). (5.17)
Using (5.1) and (5.7) we have
OiH €Co[0,T*[; H*(R™)),i=0,1. (5.18)

We recall that by (5.10) and (5.13) we have

Fi(t,,€) =7 (t,2)(p—(t,x)) " / (1—)p" (W (t,2) + 57~ (t,2)€)ds,

so, by (5.14), (5.15) and (5.5) we have
F1,0,F1,0,F1,0:F, €CO([0,T*[; L®(RT x [~1,1])). (5.19)

Now we fix T'<T™* and we introduce T, defined by

1
TEzsup{tST,||p||Loo([0)t]><R+) Sg} (5.20)

We will prove that, for € small enough, 7. =T and that there exists K such that for
all e small enough,
o1l o= o, 77; 11 )y F 1922l oo ([0, 1) L2 R4y < K- (5.21)

First, by variational methods, we obtain L2-estimates on p and O;p. To obtain L2-
estimates on d,p we use the equations taking into account that the boundary {z =0}
is characteristic.

Second step: variational estimates

We take the inner product of system (5.11) by p and we obtain that

1d 1
sl + [ Aoupepdst [ Lopdot? [ o= [ Ritacpoton
2dt R+ R+ € Jr+ R+

+/ H-pdz.
R+
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Using (5.12) we obtain that

1
A10zp-pdx= —5/ (0:A1)p- pdz.
R+ Rt

With the estimates (5.16),.., (5.19) and since £|p| <1 on [0,7.] x R, there exists a
constant C >0 such that, for t <T,

1d 1
§%||P||%2(R+)+E/R+ p3de <C(L+||pllTe ey + lo1ll Lo @o) o1l 2 @)l 03]l L2 @+))-

Therefore we obtain that for ¢t <T,
d 2 1 2 2 2 2
EHP”LQ(RJr)‘Fg R+p3dm§0(1+||p||L2(]R+)+5||p1||L°°(]R+)||p1||L2(R+))- (5.22)

We can derivate (5.11)-(5.12) with respect to ¢

0 0
1
8t8tp+A1818tp+L6tp+g 0 :—8tA181p—6tLp+ 0
Ocp3 OF(t,z,ep1)p3
+ 0 + 0 +0:H.
€D Fy (t,2,ep1)0p1p7 2F\(t,x,ep1)p10p1

With the same arguments as before we obtain that there exists C' >0 such that for
<T,

d 1
P [10epllZ 2 g+ + z /}R+ (Oep3)*de <C(L+ lIpll 7oy + 10eol T2 @ry + 1020l 72 Rt )

+C<€Hp1||2L°°(]R+)(||p1||%2(]R+)+ ||6tp1||%2(]R+)))'
(5.23)
We define ¢ by

1

) = (1O + 1008 22 (5.24)

so we obtain by (5.22) and (5.23) the L?-estimate: there exists C'>0 such that for
t<T,

() + 2 ool g+ 10ups aqany) < COLH (1) (5.25)

a
dt 2 2 2
tellprllfoe ey (W ()" +10zpll T2 r+))-

Third step
We now estimate d,p using the equations

Ocp1 —7%500@ +(Lp) :107
8tp2_7§8mpll— (b—")20xp3+ (Lp)2= Ho, (5.26)
Oips — (1t—")20up2+ (Lp)s+Lps = Fi(t,z,ep1)p3 + Hs.

From the first equation in (5.26), and with (5.15) and (5.17) we have for t € [0,T¢]

0202l L2 (m+) < C. (5.27)



12 Relaxation Approximation for p-Systems
Let us introduce p1 = p1 +772 (1 —~)2 ps. From the second equation in (5.26) we have
ez —7E 0upr +7% 00 (Y E (1—7)%)p3 + (Lp)2 = Ho,
so, by (5.15), (5.14), (5.17) and (5.18) we obtain that
10251 L2r+) < C(1+1p). (5.28)

We cannot estimate 9,p1 or d,p3 by the same method because the boundary {z =0}
is characteristic. We rewrite the third equation in (5.26)

1 _1 1
O3+ —p3=7"2(n=7)2(Gp1+(Lp)1) = (Lp)s + 11 (t,,ep1)pT + Hs.
So eliminating p; we obtain

1y 0ps+ o3 =7 "E (=) 2 (01 — By T (=) % )ps) + My (t,x)p1 + Ma(t,z)ps
+M;(t,z)ps+ Hs + Fi (t,2,ep1)p3,
(5.29)

with p1 =1 —v~2 (u—~)2 p3.We derivate (5.29) with respect to x and we obtain the
equation satisfied by 9, ps3

6
8t81p3—|—7'(t,a:)8mp3:ZTi, (5.30)

=1
with
T= ply G 72 (n=)2 0 (72 (u—7)?) +ede Fi(t,a,ep)7 2 (=)
2R (t2,ep)p1y 2 (B—)2 —Ms(t,w)) ;
Ti=p Y5 ()2 0001,

Ty=p~"y (590 (V"2 (n—7)%)0epr — O (v 1) Deps
=0 (v Z(L=7)20:(v 2 (n—")%))ps3
+ (0 M1)f1 + (0, Ma)pa + (0 Mz)ps)
Ts= p~'v0,.Hs,

Ty= p=ty(M10.p1 + M20.p2),

Ty = 1y (0. Fi (b.,1) 97 — 206 Fi (6,2,201)00 (17 (1= 7))o ps
—2F(t,2,6p1) 0 (v 2 (#—7)%)01,03) ,

To= p 'y (€0¢Fi(t,,ep1)p3 0 pr +2F1 (t,2,6p1) p102p1) -

For t€0,T], using (5.5), (5.14) (5.15) and (5.19) we obtain that

pty
13

T(t,x)—

‘ <C+GCollp1l| Lo m+)-
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We define T <T. by

1
T;:maX{tSTs,HpﬂLoo([o,t]XR-%—)SFOE}, (531)
so there exists 71 >0 and 75 >0 such that
VE<T! Va>0,2 <r(t,z) < 2. (5.32)
€ €

We solve Equation (5.30) by Duhamel formula

6
Oups=>» T, (5.33)
i=1
with
t t
’E(t,a:)z/ exp(—/ 7(0,z)do)T; (s,x)ds.
0 s

We define ¥ by

U (t) =sup(s), (5.34)
[0,¢]

where 1) is given by (5.24). Integrating by parts in 77 we obtain

T (tx) = / iy (=) (s, z)exp(— / (0,2)do)0, i (5,2)ds

t t

- / exp(— / 7(0,2)do)s (4% (11— )} )(5,2)0, 51 (5,2)ds
YR (=) % Bu ().

Using (5.32), (5.5), (5.14), (5.15) and (5.28) we have

t
”Tl(tv')HL?(]RﬂS/ eXP(—%(t—S))C(w(S)H)(HTg—2)d8+0(w(t)+l),
0
and we obtain that
VEt<TH | Tl 2@y SCA+T(1)). (5.35)

Using (5.5) (5.14) (5.15) (5.24) (5.34) and also (5.18) for T35 and (5.27) and (5.28) for
T4, we obtain

Vi <T}, | Bl L2@e) + | Bl L2y + [ Tall L2y < Ce(1+0(2)). (5.36)
For the nonlinear terms T5 and Tg we use in addition (5.19) (5.20) and we obtain
VE<T! || Ts)| L2y + 1 Toll L2 ey SC(L+ V(1)) (5.37)

Therefore we obtain the following estimation for 9,p using (5.27) (5.28) (5.33) (5.35)
(5.36) (5.37)

VE<TL [|0upll L2y < C(1+T(1)), (5.38)
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so we have
VE<TL [|pll e ey < Cr(1+T(2)). (5.39)

Fourth step

By a comparison method we estimate W. For ¢t <TJ}, integrating (5.25) from 0 to t,
using (5.38) and (5.39) we obtain that

t
(‘If(t))QSCz/ (1+((s))* +e(U(s)) " )ds. (5.40)
0
We introduce the differential equation

Y. =Co(1+y.+ey?), y-(0)=0. (5.41)

There exists €9 >0 such that, for € <gg, the lifespan of y. is greater than T'. So we
have

Ve <ep,VE<T,ye(t) <ye, () <yeo(T) =Cs.
By comparison principle we deduce from (5.40) that
Ve <e,VE<TL (U(t))? <Cs,
and from (5.39),
Ve <eo,VE<TL||pll ey < CL(1++/Cs).

Let £1 >0 such that €1 <gg such that

Ve<e,Ch1(14++/C5) < 5Cos

So, by (5.20) and (5.31), we have for e <ey, T} =T.=T and we conclude the proof
by the estimate

3K >0,Ye <ey, [|pl Lo (0,171 m+)) + 100l Lo (o, 11; 22 (R H)) < K-

6. Annex
Using the method in W.A. Yong [22] we show the convergence result for the Cauchy
problem

Opu§ — 0pus =0,

1
0w — Dy = - ((u) ),
for (t,z) ER* xR with the smooth initial data

w®(0,2) =wo(z) = (uo(z),vo(x)) for z €R. (6.2)
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Let us introduce u° the smooth solution of the Cauchy problem

0 0
8tul - 8IUQ == 07

(6.3)
Oruy — 0pp(ud) =0,
with the initial data
u®(0,2) =uo (). (6.4)
As in Tzavaras [21] we assume that there exists v >0 and I' > 0 such that
VEER, y<p'(§) <T <y, (6.5)

so the problem (6.1)-(6.2) admits a global solution w® = (u®,v¢) such that
w® € CO(RT; H¥(R))NCH(RT; H*~1(R)).

We will prove the following convergence theorem.

THEOREM 6.1. Under assumption (6.5), if wo € H*(R) with s>2, then there exists
Ty >0 such that when ¢ tends to zero, u® tends to u® in L*°([0,T1]; H*(R)).
REMARK 6.1. It would be possible to relax hypothesis (6.5) as in Theorem 2.3; in this
case, the lifespan of w® is uniformly greater that T;.

REMARK 6.2. In fact it appears a boundary layer in time which affects only the third
component of we.

Sketch of the proof

First step: the stability assumption in [22] are satisfied. As in [21] and [7], we
consider the strictly convex entropy function for the system (6.1)

Ly ) R
5(u1,uQ,v)=§u2+ulv—§u1— h™ (y)dy,
0

where h(§)=p(&) — p€ which is strictly decreasing by (6.5). So Ag(w)=E"(w) is a
symmetrizer for the system. Denoting a = (h~!)'(v— pu1) we obtain

—p—p?a 01+ pa
Ag(w) = 0 10 )
1+pa 0 —a

and the system (6.1) is equivalent to the quasilinear symmetric system

00 0 1+ pa

Aow)drw+ | 0 0 =1 |dsw="(p)—v)[ 0 |. (6.6)
0-10 € —a
We denote
0 1 00
Q(w)= 0 and P(w)= 0 10/,
p(ur) —v —p'(u1) 01
and we obtain
000
Pw)Q' (w)P " *(w)=100 0 (6.7)
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On the equilibrium manifold V= {v=p(u;)}, we have

(W) 0—p(u)
Ao(w)Q/(w)+Q/(w)Ao(w):m ’(2 )8 (1) . (6.8)
—p (w1

Using (6.6), (6.7) and (6.8) we obtain the stability conditions in [22].

Second step: we use Theorems 6.1 and 6.2 in [22]. We introduce the interior profile

0

w® = ((ud,u5),p(u?)) and the boundary layer term I°=I° —w°(0,2) where I° is the

solution of

90— Q). T(r =0) = o).

We have I =19 =0 and

Ig(1,2) = (vo(x) — p(u1,0))e ™",

and we obtain

Wt (t,) :wo(t,x)—kfo(é,x)—i—(’)(s),

so we conclude the proof of Theorem 6.1.

REMARK 6.3. If wy belongs to the equilibrium manifold then the order zero boundary
layer term vanishes.

REMARK 6.4. In fact using more precisely [22] and the appendiz of [3] we can prove
that Ty can be arbitrarily close to the lifespan of u° as in Theorem 2.3.

REMARK 6.5. In this annex the matriz P introduced in [22] plays an analogous role
as the matriz P in section 5.
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