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CHAPTER 1

Preliminaries

1. Non-archimedean fields

1.1. We recall basic definitions and facts about non-archimedean fields.

DEFINITION. A non-archimedean field is a field K equipped a non-archimedean
absolute value that is, an absolute value | · |K satisfying the ultrametric trinagle in-
equality

|x+ y|K ⩽ max
{
|x|K , |y|K

}
, ∀x,y ∈ K.

We will say that K is complete if it is complete for the topology induced by | · |K .

To any non-archimedean field K can associate its ring of integers

OK =
{

x ∈ K | |x|K ⩽ 1
}
.

The ring OK is local, with the maximal ideal

mK =
{

x ∈ K | |x|K < 1
}
.

The group of units of OK is

UK =
{

x ∈ K | |x|K = 1
}
.

The residue field of K is defined as

kK = OK/mK .

THEOREM 1.2. Let K be a complete non-archimedean field and let L/K be a
finite extension of degree n = [L : K]. Then the absolute value | · |K has a unique
continuation | · |L to L, which is given by

|x|L =
∣∣NL/K(x)

∣∣1/n
K ,

where NL/K is the norm map.

PROOF. See [1, Ch. 2, Thm 7]. Another proof (valid only for locally compact
fields) can be found in [3, Chapter II, section 10]. □

This theorem allows to extend | · |K to the algebraic closure of K. In particular,
we have a unique extension of | · |K to the separable closure K of K.

PROPOSITION 1.3 (Krasner’s lemma). Let K be a complete non-archimedean
field. Let α ∈ K and let α1 = α,α2, . . . ,αn denote the conjugates of α over K. Set

dα = min
{
|α−αi|K | 2 ⩽ i ⩽ n

}
.

If β ∈ K is such that |α−β |< dα , then K(α)⊂ K(β ).
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6 1. PRELIMINARIES

PROOF. We recall the proof. Assume that α /∈ K(β ). Then K(α,β )/K(β )
is a non-trivial extension, and there exists an embedding σ : K(α,β )/K(β )→
K/K(β ) such that αi := σ(α) ̸= α. Hence

|β −αi|K = |σ(β −α)|K = |β −α|K < dα

and

|α−αi|K = |(α−β )+(β −αi)|K ⩽ max
{
|α−β |K , |β −αi|K

}
< dα .

This gives a contradiction. □

We give an application of Krasner’s lemma. Let K be an algebraic closure of
K. By Theorem 1.2, the absolute value | · |K extends in a unique way to an absolute
value on K, which we will again denote by | · |K . Let CK denote the completion of
K with respect to | · |K .

PROPOSITION 1.4. Assume that K is a complete non-archimedean field of
characteristic 0. Then the field CK is algebraically closed.

PROOF. Proof by contradiction. Let f (X)=Xn+an−1Xn−1+· · ·+a0 ∈OCK [X ]
be an irreducible monic polynomial of degree ⩾ 2, and let C denotes its splitting
field. By Theorem 1.2, the absolute value | · |K extends to C. Let α1, α2, · · · ,αn be
the roots of f (X) in C. Set

d := min
1⩽i̸= j⩽n

|αi−α j|K > 0.

Choose a monic polynomial g(X) := Xn +bn−1Xn−1 + · · ·+b0 ∈ K[X ] such that

|bi−ai|K < dn, for all 0 ⩽ i ⩽ n−1.

Let β ∈ K be a root of g(X). Since

f (X)−g(X) =
n−1

∑
i=0

(ai−bi)X i,

and β ∈ OK , we have:

| f (β )|K = | f (β )−g(β )|K ⩽ max
0⩽i⩽n−1

|bi−ai|K < dn.

On the other hand, f (β ) =
n
∏
i=1

(β −αi). Hence

n

∏
i=1
|β −αi|K < dn.

Therefore, there exists i0 such that |β −αi0 |K < d. Taking into account the defini-
tion of d, we obtain that

|β −αi0 |K < min
i̸=i0
|αi−αi0 |K

By Krasner’s lemma, this implies that CK(αi0) ⊂ CK(β ) = CK . Therefore αi0 ∈
CK , and we conclude that f (X) has a root in CK . This contradicts the irreductibility
of f (X). □



2. LOCAL FIELDS 7

PROPOSITION 1.5 (Hensel’s lemma). Let K be a complete non-archimedean
field. Let f (X) ∈ OK [X ] be a monic polynomial such that

a) the reduction f̄ (X) ∈ kK [X ] of f (X) modulo mK has a root ᾱ ∈ kK ;
b) f̄ ′(ᾱ) ̸= 0.
Then there exists a unique α ∈OK such that f (α) = 0 and ᾱ = α (mod mK).

PROOF. See, for example [11, Chapter 2, §2]. □

1.6. Recall that a valuation on K is a function vK : K→R∪{+∞} satisfying
the following properties:

1) vK(xy) = vK(x)+ vK(y), ∀x,y ∈ K∗;
2) vK(x+ y)⩾ min{vK(x),vK(y)}, ∀x,y ∈ K∗;
3) vK(x) = ∞⇔ x = 0.

For any ρ ∈]0,1[, the function |x|ρ = ρvK(x) defines an ultrametric absolute value on
K. Conversely, if | · |K is an ultrametric absolute value, then for any c the function
vc(x) = logc |x|K is a valuation on K. This establishes a one to one correspondence
between equivalence classes of non-archimedean absolute values and equivalence
classes of valuations on K.

Exercise 1. Let K be a field of characteristic p with algebraically closed
residue field. Consider the polynomial f (X) := X p−X − c. Show that if c ∈ OK ,
then f (X) splits in K.

2. Local fields

2.1. In this section we review the basic theory of local fields.

DEFINITION. A discrete valuation field is a field K equipped with a valuation
vK such that vK(K∗) is a discrete subgroup of R. Equivalently, K is a discrete
valuation field if it is equipped with an absolute value | · |K such that |K∗|K ⊂ R+

is discrete.

Let K be a discrete valuation field. In the equivalence class of discrete val-
uations on K we can choose the unique valuation vK such that vK(K∗) = Z. An
element πK ∈ K such that vK(πK) = 1 is called a uniformizer of K. Every x ∈ K∗

can be written in the form x = π
vK(x)
K u with u ∈UK , and one has:

K∗ ≃ ⟨πK⟩×UK , mK = (πK).

We adopt the following convention.

DEFINITION. A local field is a complete discrete valuation field K whose
residue field kK is finite.

Note that many (but not all) results and constructions of the theory are valid
under the weaker assumption that the residue field kK is perfect.

We will always assume that the discrete valuation

vK : K→ Z∪{+∞}
is surjective.
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PROPOSITION 2.2. Let K be a local field. Then the groups OK , m
n
K and UK

are compact.

PROOF. One can easily prove the sequential compacteness of OK considering
finite sets OK/m

n
K . Since mK = πKOK and UK ⊂ OK is closed, this proves the

lemma. □

2.3. If L/K is a finite extension of local fields, we define the ramification
index e(L/K) and the inertia degree f (L/K) of L/K by

e(L/K) = vL(πK), f (L/K) = [kL : kK ].

Recall the fundamental formula

f (L/K)e(L/K) = [L : K]

(see, for example, [1, Ch. 3, Thm 6] ).

2.4. Let K be a local field, q = |kK |.

PROPOSITION 2.5. i) For any x ∈ kK there exists a unique [x] such that x = [x]
mod πK and [x]q = [x].

ii) The multiplicative group of K contains the subgroup µq−1 of (q−1)th roots
of unity and the map

[ · ] :k∗K → µq−1,

x 7→ [x]
is an isomorphism.

iii) If char(K) = p, then [ · ] gives an inclusion of fields kK ↪→ K.

PROOF. The statements i-ii) follow easily from Hensel’s lemma, applied to the
polynomial Xq−X .

iii) If char(K) = p then for any x,y ∈ kK

([x]+ [y])q = [x]q +[y]q = [x]+ [y]

(use binomial expansion). By unicity, this implies that [x+ y] = [x]+ [y]. □

COROLLARY 2.6. Every x ∈ OK can be written by a unique way in the form

x =
∞

∑
i=0

[ai]π
i
K .

Exercise 2. Let x ∈ kK and let x̂ ∈OK be any lift of x under the map OK → kK .
a) Show that the sequence (x̂qn

)n∈N converges to an element of OK which
doesn’t depend on the choice of x̂.

b) Show that [x] = limn→+∞ x̂qn
.

THEOREM 2.7. Let K be a local field and p = char(kK).
i) If char(K) = p, then K is isomorphic to the field kK((X)) of Laurent power

series, where kK is the residue field of K and X is transcendental over k. The dis-
crete valuation on K is given by

vK( f (X)) = ordX f (X) := min{i ∈ Z | ai ̸= 0},
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where f (X) = ∑
i≫−∞

aiX i. Note that X is a uniformizer of K and OK ≃ kK [[X ]].

ii) If char(K) = 0, then K is isomorphic to a finite extension of the field of p-
adic numbers Qp. The absolute value on K is the extension of the p-adic absolute
value ∣∣∣a

b
pk
∣∣∣

p
= p−k, p ̸ |a,b.

PROOF. i) Assume that char(K) = p. By Corollary 2.6, we have a bijection

K→ kK((X)),

x 7→ x =
∞

∑
i=0

aiX i, where x =
∞

∑
i=0

[ai]π
i
K .

By Proposition 2.5 iv), this map is an isomorphism.
ii) Assume that char(K) = 0. Then Q ⊂ K. The absolute value | · |K induces

an absolute value on Q. By Ostrowski theorem, any non archimedean absolute
value on Q is equivalent to the p-adic absolute value for some prime p. Since K is
complete, this implies that Qp ⊂ K. Since kK is finite, [kK : Fp]<+∞. Since vK is
discrete, e(K/Qp) = vK(p)<+∞. This implies that [K : Qp]<+∞.

□

2.8. The group of units UK is equipped with the exhaustive descending filtra-
tion

U (n)
K = 1+π

n
KOK , n ⩾ 0.

PROPOSITION 2.9. i) The map

UK → k∗K , x 7→ x̄ := x (mod πK)

induces an isomorphism UK/U (1)
K ≃ k∗K .

ii) For any n ⩾ 1, the map

U (n)
K → kK , 1+π

n
Kx 7→ x̄

induces an isomorphism U (n)
K /U (n+1)

K ≃ k+K .

PROOF. The proof is left as an exercise. □

DEFINITION 2.10. One says that L/K is
i) unramified if e(L/K) = 1 (and therefore f (L/K) = [L : K]);
ii) totally ramified if e(L/K) = [L : K] (and therefore f (L/K) = 1).

2.10.1. The unramified extensions can be described entirely in terms of the
residue field kK . Namely, there exists a one-to-one correspondence

{finite extensions of kK}←→ {finite unramified extensions of K}
which can be explicitly described as follows. Let k/kK be a finite extension of
kK . Write k = kK(α) and denote by f (X) ∈ kK [X ] the minimal polynomial of α.

Let f̂ (X) ∈ OK [X ] denote any lift of f (X). Then we associate to k the extension
L = K(α̂), where α̂ is the unique root of f̂ (X) whose reduction modulo mL is α.
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An easy argument using Hensel’s lemma shows that L doesn’t depend on the choice
of the lift f̂ (X).

Unramified extensions form distinguished classes of extensions in the sense
of [10]. In particular, for any finite extension L/K one can define its maximal
unramified subextension Lur as the compositum of all its unramified subextensions.
Then one has

f (L/K) = [Lur : K], e(L/K) = [L : Lur].

The extension L/Lur is totally ramified.
2.10.2. Assume that L/K is totally ramified of degree n. Let πL be any uni-

formizer of L and let

f (X) = Xn +an−1Xn−1 + · · ·+a1X +a0 ∈ OK [X ]

be the minimal polynomial of πL. Then f (X) is an Eisenstein polynomial, namely

vK(ai)⩾ 1 for 0 ⩽ i ⩽ n−1, and vK(a0) = 1.

Conversely, if α is a root of an Eisenstein polynomial of degree n over K, then
K(α)/K is totally ramified of degree n, and α is an uniformizer of K(α).

DEFINITION 2.11. One says that an extension L/K is
i) tamely ramified, if e(L/K) is coprime to p.
ii) totally tamely ramified, if it is totally ramified and e(L/K) is coprime to p.

Using Krasner’s lemma, it is easy to give an explicit description of totally
tamely ramified extensions.

PROPOSITION 2.12. If L/K is totally tamely ramified of degree n, then there
exists a uniformizer πK ∈ K such that

L = K(πL), π
n
L = πK .

PROOF. Assume that L/K is totally tamely ramified of degree n. Let Π be a
uniformizer of L and f (X) = Xn + · · ·+ a1X + a0 its minimal polynomial. Then
f (X) is Eisenstein, and πK := −a0 is a uniformizer of K. Let αi ∈ K (1 ⩽ i ⩽ n)
denote the roots of g(X) := Xn +a0. Then

|g(Π)|K = |g(Π)− f (Π)|K ⩽ max
1⩽i⩽n−1

|aiΠ
i|K < |πK |K

Since |g(Π)|K =
n
∏
i=1

(Π−αi) and Π = (−1)n
n
∏
i=1

αi, we have

n

∏
i=1
|Π−αi|K <

n

∏
i=1
|αi|K .

Therefore there exists i0 such that

(1) |Π−αi0 |K < |αi0 |K .

Set πL = αi0 . Then

∏
i ̸=i0

(πL−αi) = g′(πL) = nπ
n−1
L .
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Since (n, p) = 1 and |πL−αi|K ⩽ |πL|K , the previous equality implies that

dπL := min
i̸=i0
|πL−αi|K = |πL|K .

Together with (1), this gives that

|Π−αi0 |K < dπL .

Applying Krasner’s lemma we find that K(πL)⊂ L. Since [L : K] = [K(πL) : K] = n,
we obtain that L = K(πL), and the proposition is proved.

□

Exercise 3. Show that Qp( p−1
√
−p) = Qp(ζp), where ζp is a primitive pth root

of unity.

Exercise 4. Let K be a local field and πK and π ′K be two uniformizers of K.
Show that

Kur( n
√

πK) = Kur( n
√

π ′K), for any (n, p) = 1.

Deduce that the compositum of two tamely ramified extensions is tamely ramified.

Exercise 5. ( See[11, Chapter 2, Proposition 14]). Let K be a local field
of characteristic 0. Show that for any n ⩾ 1 there exists only a finite number of
extensions of K of degree n.

Exercise 6. Show that a local field of characteristic p has infinitely many sepa-
rable extensions of degree p. This could be proved using Artin–Schreier extensions
(see for example [10, Chapter VI,§6] for basic results of Artin–Schreier theory).

3. The different

3.1. The Dedekind different. In this subsection, A denotes a Dedekind ring
with fraction field K. Let L/K be a finite separable extention and B the integral
closure of A in L. We consider the map

tL/K : L×L→ K,

tL/K(x,y) = TrL/K(xy).

PROPOSITION 3.2. tL/K is a non-degenerate symmetric K-bilinear form on L.

PROOF. We have:
tL/K(x1 + x2,y) = TrL/K((x1 + x2)y) = TrL/K(x1y+ x2y) =

TrL/K(x1y)+TrL/K(x2y) = tL/K(x1,y)+ tL/K(x2,y).

If a ∈ K, then for any z ∈ L on has TrL/K(az) = aTrL/K(z), and therefore

⟨ax,y⟩= TrL/K(axy) = aTrL/K(xy) = a⟨x,y⟩.
This shows that tL/K is a K-bilinear form. Moreover, it is clear that it is sym-
metric. From the general theory of field extensions, it is known that the sepa-
rability of L/K implies that for any basis {ωi}n

i=1 of L over K, the determinant
det
(
tL/K(ωi,ω j)1⩽i, j⩽n

)
is non-zero. Therefore the form tL/K is non-degenarate.

□
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If M⊆ L is a finitely generated A-module, we define its complementary module
M′ as

M′ = {x ∈ L | tL/K(x,y) ∈ A for all y ∈M}.
It is easy to see that M′ is an A-module and that M ⊆ N implies N′ ⊆M′.
Let ω1, . . . ,ωn be a base of L/K and let ω ′1, . . . ,ω

′
n denote the dual base, i.e.

tL/K(ωi,ω
′
j) =

{
1, if i = j,
0, if i ̸= j.

If M = Aω1 + . . .+Aωn, then M′ = Aω ′1 + · · ·+Aω ′n.
We study the complementary module B′ of the Dedekind ring B. Note that, in

general, B is not free over A.

PROPOSITION 3.3. i) There exist free A-modules M1,M2 ⊂ L such that

M1 ⊆ B⊆M2.

ii) B′ is a fractional ideal of B and B⊂ B′.
iii) The inverse (B′)−1 of B′ is an ideal of B.

PROOF. i) Let {ωi}n
i=1 be a basis of L/K. There exists a∈A such that aω1, . . . ,aωn

are integral over A. Let M1 denote the A-module generated by aω1, . . . ,aωn. Then
M1 is A-free, and M1 ⊆ B.

ii) By definition, B′ is an A-module. If x,y ∈ B, then

tL/K(x,y) = TrL/K(xy) ∈ A.

Hence B⊂ B′. To show that B′ is a fractional ideal, we only should find b ̸= 0 such
that bB′ ⊆ B. Let x1, . . . ,xn be a basis of M2 over A. Then there exists b ∈ B such
that bx1, . . . ,bxn ∈ B. Hence bB′ ⊂ bM2 ∈ B.

iii) By definition, the inverse (B′)−1 of B′ is the fractional ideal defined by

(B′)−1 = {x ∈ L |xB′ ⊂ B}
Let x ∈ (B′)−1. Since B⊆ B′, we have x ∈ xB⊂ xB′ ⊂ B. This proves that (B′)−1 ⊂
B. □

DEFINITION. The ideal DB/A := (B′)−1 is called the different of B over A.

THEOREM 3.4. Let K ⊂ L⊂M be a tower of separable extensions. Let B and
C denote the integral closure of A in L and M respectively. Then

DC/A =DC/BDB/A.

Here DC/BDB/A denotes the ideal of C generated by the products xy, x ∈ DC/B,
y ∈DB/A.

PROOF. We will prove the theorem in the equivalent form

D−1
C/A =D−1

C/BD
−1
B/A.

First prove that

(2) D−1
C/BD

−1
B/A ⊂D−1

C/A.
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The ideal D−1
C/BD

−1
B/A is generated by the products xy x∈D−1

C/B, y∈D−1
B/A. Let z∈C.

Then TrM/L(xz) ∈ B, and

TrM/K((xy)z) = TrL/K(yTrM/L(xz)) ∈ A.

therefore xy ∈D−1
C/A, and the inclusion (2) is proved.

Now assume that x ∈D−1
C/A. Then for all y ∈C one has

TrM/K(xy) ∈ A.

Since TrM/K = TrL/K ◦TrM/L, we obtain that for all b ∈ B

TrL/K(TrM/L(xy)b) = TrM/K(x(yb)) ∈ A.

Hence, TrM/L(xy) ∈D−1
B/A. This implies that for all z ∈DB/A one has

TrM/L((xz)y) = zTrM/L(xy) ∈ B,

and we obtain that xz ∈D−1
C/B. Therefore we proved that

D−1
C/ADB/A ⊂D−1

C/B,

i.e. that
D−1

C/A ⊂D−1
B/AD

−1
C/B.

Together with (2), this gives the theorem. □

Now we compute the different in the important case of simple extensions of
Dedekind rings.

THEOREM 3.5. Assume that B = A[α], where α is some element integral over
A. Then DB/A coincides with the principal ideal generated by f ′(α) :

DB/A = ( f ′(α)).

PROOF. Let f (X) = a0 +a1X + · · ·+an−1Xn−1 +Xn ∈ A[X ] denote the mini-
mal monic polynomial of α over K. Then {1,α,α2, . . . ,αn−1} is a basis of B over
A. In particular, B is free of rank n over A.

Let α1, . . . ,αn denote the roots of f (X) in some algebraic closure of K contain-
ing B. We claim that

(3)
n

∑
i=1

f (X)

X−αi

αr
i

f ′(αi)
= X r

for all r = 0,1, . . . ,n− 1. To prove this formula, it is sufficient to remark that X r

and ∑
n
i=1

f (X)
X−αi

αr
i

f ′(αi)
are both polynomials of degree ⩽ n−1 taking the same values

at α1, . . .αn. Namely,(
f (X)

X−αi

)∣∣∣∣
X=α j

=

{
0, if i ̸= j,
f ′(α j), if i = j.

and therefore
n

∑
i=1

(
f (X)

X−αi

αr
i

f ′(αi)

)∣∣∣∣
X=α j

= f ′(α j) ·
αr

j

f ′(α j)
= f ′(α j).
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Now we prove the theorem using formula (3).
For any polynomial g(X) = c0+c1X + · · ·+ckXk with coefficients in L, define:

TrL/K(g(X)) =
k

∑
i=1

TrL/K(ci)X i.

Then formula (3) reads:

TrL/K

(
f (X)

X−α

αr

f ′(α)

)
= X r.

Set
f (X)

X−α
= b0 +b1X + · · ·+bn−1Xn−1.

From the Euclidean division, it follows that all bi ∈ B. We have:

TrL/K

(
bi

f ′(α)
α

r
)
=

{
0, if i ̸= r,
1, if i = r.

Therefore the elements bi/ f ′(α), 0 ⩽ i ⩽ n− 1 form the dual basis of the basis
1,α, . . . ,αn−1. Hence

D−1
B/A =

1
f ′(α)

(b0A+b1A+ · · ·+bn−1A).

To complete the proof, we only need to show that

(4) b0A+b1A+ · · ·+bn−1A = A[α].

Since bi ∈ B the inclusion

b0A+b1A+ · · ·+bn−1A⊂ B

is clear. On the other hand from the identity

f (X) = (b0 +b1X + · · ·+bn−1Xn−1)(X−α)

we obtain, by induction that

bn−1 = 1 ⇒ A = bn−1A
bn−2−α = an−1 ⇒ α = bn−2−an−1 ∈ A+bn−2A,

bn−3−αbn−2 = an−2 ⇒ α
2 ∈ A+bn−2A+bn−3A,

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

Therefore A[α]⊆ b0A+b1A+ · · ·+bn−1A, and (4) is proved. It implies that D−1
B/A =

f ′(α)−1B, and we are done. □
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3.6. The case of local fields. Let L/K be a finite separable extension of local
fields. In that case, DL/K is a principal ideal and therefore DL/K = ms

L for some
s ⩾ 0. Set

vL(DL/K) := s = inf{vL(x) | x ∈DL/K}.

PROPOSITION 3.7. Let L/K be a finite separable extension of local fields and
e = e(L/K) the ramification index. The following assertions hold true:

i) If OL = OK [α], and f (X) ∈ OK [X ] is the minimal polynomial of α, then
DL/K = ( f ′(α)).

ii) DL/K = OL if and only if L/K is unramified.
iii) vL(DL/K)⩾ e−1.
iv) vL(DL/K) = e−1 if and only if L/K is tamely ramified.

PROOF. The first statement is a particular case of Theorem 3.5. We prove ii-iv)
(see also [11, Chapter 3, Proposition 8] for more detail).

a) Let L/K be an unramified extension of degree n. Write kL = kK(ᾱ) for some
ᾱ ∈ kL. Let f (X) ∈ kK [X ] denote the minimal polynomial of ᾱ. Then deg( f̄ ) = n.
Take any lift f (X) ∈ OK [X ] of f̄ (X) of degree n. By Proposition 1.5 (Hensel’s
lemma) there exists a unique root α ∈OL of f (X) such that ᾱ = α (mod mK). It’s
easy to see that OL = OK [α]. Since f̄ (X) is separable, f̄ ′(ᾱ) ̸= 0, and therefore
f ′(α) ∈UL. Applying i), we obtain that

DL/K = ( f ′(α)) = OL.

Therefore DL/K = OL if L/K is unramified.
b) Assume that L/K is totally ramified. Then OL = OK [πL], where πL is any

uniformizer of OL. Let f (X) = Xe + ae−1Xe−1 + · · ·+ a1X + a0 be the minimal
polynomial of piL. Then

f ′(πL) = eπ
e−1
L +(e−1)ae−1π

e−2
L + · · ·+a1.

Since f (X) is Eisenstein, vL(ai)⩾ e, and an easy estimation shows that vL( f ′(πL))⩾
e−1. Thus

vL(DL/K) = vL( f ′(α))⩾ e−1.

This proves iii). Moreover, vL( f ′(α)) = e− 1 if and only if (e, p) = 1 i.e. if and
only if L/K is tamely ramified. This proves iv).

c) Assume that DL/K = OL. Then vL(DL/K) = 0. Let Lur denote the maximal
unramified subextension of L/K. By (??), a) and b) we have

vL(DL/K) = vL(DL/Lur)⩾ e−1.

Thus e = 1, and we showed that each extension L/K such that DL/K = OL is un-
ramified. Together with a), this proves i). □

Exercise 7. Let L/K be a finite extension of local fields. Show that OL =OK [α]
for some α ∈ OL. Hint: take α = [ξ ]+πL, where kL = kK(ξ ).
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4. Ramification filtration

4.1. In this section, we determine Galois groups of unramified extensions.

PROPOSITION 4.2. Let L/K be a finite unramified extension. Then L/K is a
Galois extension and the natural homomorphism

r : Gal(L/K)→ Gal(kL/kK)

is an isomorphism.

PROOF. a) Write kL = kK(ξ ) and denote by f (X) the minimal polynomial of
ξ . Let f̂ (X) ∈ OK [X ] be a lift of f (X). Then OL = OK [ξ̂ ] where f̂ (ξ̂ ) = 0 and
ξ = ξ̂ (mod πL) Since kL/kK is a Galois extension, all roots ξ1, . . . ,ξn of f (X) lie
in kL. By Hensel’s lemma, there exists unique roots ξ̂1, . . . , ξ̂n ∈ OL of f̂ (X) such
that ξi = ξ̂i (mod πL). This shows that L/K is a Galois extension.

b) Let gi ∈ Gal(L/K) be such that gi(ξ̂ ) = ξ̂i. Then r(gi)(ξ ) = ξi. This shows
that r is an isomorphism. □

Recall that Gal(kL/kK) is the cyclic group generated by the automorphism of
Frobenius:

fkL/kK (x) = xq, ∀x ∈ kL.

DEFINITION. We denote by FL/K and call the Frobenius automorphism of L/K
the pre-image of fkL/kK in Gal(L/K). Thus FL/K is the unique automorphism such
that

FL/K(x)≡ xq (mod πL).

4.3. Let L/K be a arbitrary finite Galois extension, and let Lur denote its
maximal unramified subextension. Then we have an exact sequence

{1}→ IL/K → Gal(L/K)→ Gal(Lur/K)→{1}
The subgroup IL/K = Gal(L/Lur) is called the inertia subgroup of Gal(L/K).

4.4. Let L/K be a finite Galois extension of local fields. Set G = Gal(L/K).
For any integer i ⩾−1 define

Gi = {g ∈ G | vL(g(x)− x)⩾ i+1, ∀x ∈ OL}.

DEFINITION. The subgroups Gi are called ramification subgroups.

We have a descending chain

G = G−1 ⊃ G0 ⊃ G1 ⊃ ·· · ⊃ Gm = {1}
called the ramification filtration on G (in low numbering). Below we collect some
basic properties of these subgroups.

1) G−1 = G and G0 = IL/K .

PROOF. We have

g ∈ G0⇔ g(x)≡ x (mod πL)⇔ g ∈ IL/K .

□
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2) Gi are normal subgroups of G.

PROOF. Let g ∈ Gi and s ∈ G. Then

vL(s−1gs(x)− x) = vL(s−1gs(x)− s−1s(x)) = vL(gs(x)− s(x)).

□

3) For each i ⩾ 0 one has

Gi =

{
g ∈ G | vL

(
1− g(πL)

πL

)
⩾ i
}
.

PROOF. We have

g(πk
L)−π

k
L = (g(πL))

k−π
k
L = (g(πL)−πL)a, a ∈ OL

Since g acts trivially on Teichmüller lifts, this implies that

g ∈ Gi⇔ vL(g(πL)−πL)⩾ i+1.

This implies the assertion. □

PROPOSITION 4.5. i) For all i ⩾ 0, the map

(5) si : Gi/Gi+1→U (i)
L /U (i+1)

L ,

which sends ḡ = g mod Gi+1 to si(ḡ) =
g(πL)

πL
(mod U (i+1)

L ), is a well defined
monomorphism which doesn’t depend on the choice of the uniformizer πL of L.

ii) The composition of si with the maps (2.9) gives monomorphisms

(6) δ0 : G0/G1→ k∗, δi : Gi/Gi+1→ k+, for all i ⩾ 1.

PROOF. The proof is straightforward. See [13, Chapitre IV, Propositions 5-
7]. □

COROLLARY 4.6. The Galois group G is solvable for any Galois extension.

4.7. For our study of the ramification filtration, it is convenient to introduce
the function

iL/K : G→ Z∪{+∞}, iL/K(g) = min{g(x)− x | x ∈ OL}.

Below, we summarize basic properties of this function:

1) If OL = OK [α], then

iL/K(g) = vL(g(α)−α).

Note that for any finite extension of local fields L/K, there exists α ∈ L
such that OL = OK [α] (see Exercise 7).

PROOF. We only need to show that for any x ∈ OL,

vL(g(x)− x)⩾ vL(g(α)−α).
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Since x =
n−1
∑

k=0
akαk for some ak ∈ OK , this follows from the computation

g(α)−α =
n−1

∑
k=0

akg(αk)−
n−1

∑
k=0

akα
k =

n−1

∑
k=1

ak(g(α)k−α
k)

and the identity

g(α)k−α
k = (g(α)−α) ·

(
k−1

∑
j=0

g(α)k− j−1
α

k

)
.

□

2) For all g1,g2 ∈ G,

iL/K(g1g2)⩾ min{iL/K(g1), iL/K(g2)}.

PROOF. For any x ∈ OL, one has

g1g2(x)− x = g1(g2(x)− x)+(g1(x)− x).

Since vL(g(y)) = vL(y) for any y ∈ L and g ∈ G, we obtain that

vL(g1g2(x)− x)⩾ min{vL(g1(g2(x)− x)),vL(g1(x)− x)}
= min{vL(g2(x)− x),vL(g1(x)− x)},

and we are done. □

3) For all g1,g2 ∈ G,

iL/K(g
−1
1 g2g1) = iL/K(g2).

PROOF. Let OL = OK [α]. Since g1 : OL→OL is a bijection, one has
OL = OK [g−1

1 (α)] and iL/K(g) = vL(gg−1
1 (α)− g−1

1 (α)) for any g ∈ G.
Hence

iL/K(g
−1
1 g2g1) = vL(g−1

1 g2g1(g−1
1 (α)−g−1

1 (α))) = vL(g−1
1 g2(α)−g−1

1 (α))

= vL(g−1
1 (g2(α)−α)) = vL(g2(α)−α) = iL/K(g2).

□

4) For any g ∈ G,

iL/K(g
−1) = iL/K(g).

PROOF. This property follows immediately from the following com-
putation:

vL(g−1(x)− x) = vL(g(g−1(x)− x)) = vL(x−g(x)).

□

5) g ∈ Gi if and only if iL/K(g)⩾ i+1.

PROOF. This property is clear. □
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4.8. The different DL/K of a finite Galois extension can be computed in terms
of the ramification subgroups.

PROPOSITION 4.9. Let L/K be a finite Galois extension of local fields. Then

vL(DL/K) = ∑
g̸=1

iL/K(g) =
∞

∑
i=0

(|Gi|−1).

PROOF. Let OL = OK [α] and let f (X) be the minimal polynomial of α. Since

f ′(α) = ∏
g̸=1

(α−g(α)),

we have

vL(DL/K)= vL( f ′(α))= ∑
g̸=1

vL(α−g(α))= ∑
g̸=1

iL/K(g)=
∞

∑
i=0

(i+1)(|Gi|−|Gi+1|)

=
∞

∑
i=0

(i+1)
(
(|Gi|−1)− (|Gi+1|−1)

)
=

∞

∑
i=0

(|Gi|−1).

□

4.10. Our next goal is to understand the behavior of the ramification filtration
in towers of local fields. We will consider a tower

(7) L

H

G F

K

where G := Gal(L/K) and H := Gal(L/F). From the definition of the ramifiaction
subgroups it follows immediately that

Hi = H ∩Gi, i ⩾−1.

COROLLARY 4.11. One has

e(L/F)vF(DF/K) = ∑
g∈G\H

iL/K(g).

PROOF. Write Proposition 4.9 for the extension L/F :

vL(DL/F) = ∑
h∈H\{e}

iL/F(h)

Taking into account that iL/F(h) = iL/K(h) and G = (G\H)∪H, we have

(8) vL(DL/K)− vL(DL/F) = ∑
g∈G\H

iL/F(g).

On the other hand, from Theorem 3.4, we have

(9) vL(DL/K) = vL(DL/F)+ vL(DF/K) = vL(DL/F)+ e(L/F)vF(DF/K).
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(Here we use the formula vL(x) = e(L/F)vF(x) for x∈ F.) Comparing formulas (8)
and (9), we obtain the corollary. □

From now one, we assume that F/K is a Galois extension. Note that in that
case Gal(F/K) = G/H. If g∈G and s∈G/H, we will write g 7→ s if s is the image
of g under the canonical projection G→ G/H.

PROPOSITION 4.12. For all s ∈ G/H,

e(L/F)iF/K(s) = ∑
g7→s

iL/K(g).

PROOF. If s = e, the both sides of the formula are equal to +∞. Assume that
s ̸= e. Write OL = OF [α] and denote by f (X) ∈ OF [X ] the minimal polynomial of
α over F. Let s f (X) ∈OF [X ] denote the polynomial obtained acting s on the coef-
ficients of f (X) (so, s acts trivially on the variable X). Directly from the definition
of iF/K , one has

s f (X)− f (X)≡ 0 (mod m
iF/K(s)
F ).

Hence (s f )(α)≡ 0 (mod m
iF/K(s)
F ). On the other hand, acting on the both sides of

the formula f (X) = ∏
h∈H

(X−h(α)) by any lift of s in G, we obtain

s f (X) = ∏
g7→s

(X−g(α)).

Therefore, (s f )(α) = ∏
g7→s

(α−g(α)), and

∏
g7→s

(α−g(α))≡ 0 (mod m
iF/K(s)
F ).

Taking the valuations of the both sides, we obtain the inequality

∑
g7→s

iL/K(g)⩾ e(L/F)iF/K(s).

To show that this inequality is in fact equality, we take the sum over all s ̸= e and
use Corollary 4.11:

e(L/F)∑
s̸=e

iF/K(s)⩾ ∑
s̸=e

∑
g7→s

iL/K(g) = ∑
g∈G\H

iL/K(g) = e(L/F)∑
s̸=e

iF/K(s).

Therefore e(L/F)iF/K(s) = ∑
g7→s

iL/K(g) for all s, and the proposition is proved. □

For any s ∈ G/H, define

j(s) := max{iL/K(g) | g 7→ s}.
Then there exists g̃ 7→ s such that j(s) = iL/K(g̃). Then any g such that g 7→ s can
be written in the form g = g̃h for some h ∈ H. Hence

iL/K(g)⩾ min{iL/K(g̃), iL/K(h)}.

On the other hand, writing h = g̃−1g we have

iL/K(h)⩾ min{iL/K(g̃
−1), iL/K(g)}= min{iL/K(g̃), iL/K(g)}= iL/K(g).
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Therefore
iL/K(g) = min{iL/K(g̃), iL/K(h)},

and we can write Proposition 4.12 in the following form:

COROLLARY 4.13. For all s ∈ G/H,

e(L/F)iF/K(s) = ∑
h∈H

min{ j(s), iL/K(h)}.

4.14. Let L/K en a finite Galois extension of local fields. For any real x ⩾−1
set Gx := Gm, where m is the unique integer such that m ⩽ x < m+1. The Hasse–
Herbrand function varphiL/K is defined as follows

(10) ϕL/K(u) =

u if −1 ⩽ u ⩽ 0,∫ u

0

dx
(G0 : Gx)

, if u ⩾ 0

From definition it follows that ϕL/K is a continuous strictly increasing piecewise
linear function. More explicitly, if we set gm := |Gm| for all integer m ⩾−1, then

ϕL/K(u) =
1
g0

(g1 + . . .+gm +(u−m)gm+1), if m < u ⩽ m+1.

In particular ϕL/K : [−1,+∞[→ [−1,+∞[ is a bijection, and we denote by ψL/K its
inverse function:

ψL/K(v) := ϕ
−1
L/K(v).

LEMMA 4.15. The following formula holds true:

ϕL/K(u) =
1
g0

∑
g̸=e

min{iL/K(g),u+1}−1.

PROOF. a) The both sides of this formula are continuous functions. In addi-
tion, because iL/K(g)⩾ 0, for any u ∈ [−1,0] one has

min{iL/K(g),u+1}=

{
0, if g /∈ G0,

u+1, if g ∈ G0.

Therefore, if u ∈ [−1,0], then

RHS(u) =
1
g0

∑
g̸=e

min{iL/K(g),u+1}−1 =
g0(u+1)

g0
−1 = u,

and RHS(u) = ϕL/K(u) on [−1.0].
b) Assume that m < u < m+1 for some integer m ⩾ 0. Then

min{iL/K(g),u+1}=

{
iL/K(g), if g /∈ Gm+1,

u+1, if g ∈ Gm+1,

and therefore
RHS′(u) =

gm+1

g0
= ϕ

′
L/K(u).

This implies that RHS′(u) = ϕ ′L/K(u) if u /∈ Z. Hence RHS(u) = ϕL/K(u), and the
lemma is proved. □
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LEMMA 4.16. Let K ⊂ F ⊂ L be a tower of finite Galois extensions. We keep
notation of diagram (7). Then

iF/K(s) = ϕL/F( j(s)−1)+1, s ∈ G/H.

PROOF. From Lemma 4.15 it follows that

ϕL/F( j(s)−1)+1 =
1
|H0|∑h̸=e

min{iL/K(h), j(s)}.

On the other hand, Corollary 4.13 can be written in the form

iF/K(s) =
1
|H0| ∑h∈H

min{ j(s), iL/K(h)}.

Here we remark that e(L/F) = |H0|. These formulas imply the lemma. □

We are now in position to prove the central results of the ramification theory
of Hasse-Herbrand.

THEOREM 4.17. i) For any u ⩾ 0

GuH/H ≃ (G/H)ϕL/F (u).

ii) ϕL/K = ϕF/K ◦ϕL/F and ψL/K = ψL/F ◦ψF/K .

PROOF. i) The first statement follows from the equivalences

s ∈ (G/H)ϕL/F (u)⇔ iF/K(s)⩾ ϕL/F(u)+1 lemma 4.16⇔ ϕL/F( j(s)−1)⩾ ϕL/F(u)

⇔ j(s)⩾ u+1⇔∃g 7→ s, such that g ∈ Gu.

ii) We deduce ii) from i). We have

(ϕF/K ◦ϕL/F)
′(u)=ϕ

′
F/K(ϕL/F(u))ϕ

′
L/F(u)=

1
((G/H)0 : (G/H)ϕL/F (u)) · (H0 : Hu)

and

(G/H)ϕL/F (u) = GuH/H = Gu/(H ∩Gu) = Gu/Hu.

This implies that

((G/H)0 : (G/H)ϕL/F (u)) = (G0 : Gu)/(H0 : Hu),

and therefore

(ϕF/K ◦ϕL/F)
′(u) =

1
(G : Gu)

= ϕ
′
L/K(u).

This implies ii). □
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4.18. In order to define the ramification filtration for infinite extensions, we
introduce the so-called upper numbering of ramification subgroups.

DEFINITION. The ramification subgroups in upper numbering are defined as
follows:

G(v) = GψL/K(v)

or equivalently GϕL/K(u) = Gu.

THEOREM 4.19.

(G/H)(v) = G(v)/G(v)∩H, ∀v ⩾ 0.

PROOF. We have (G/H)(v) = (G/H)ψF/K(v) and

G(v)/G(v)∩H = GψL/K(v)/GψL/K(v)∩H.

Setting x = ψL/K(v), we have

G(v)/G(v)∩H = Gx/Gx∩H

and (G/H)(v) = (G/H)ϕL/F (x). By Theorem 4.17, (G/H)ϕL/F (x) = Gx/Gx∩H, and
we are done. □

PROPOSITION 4.20. One has

ψL/K(v) =

v if −1 ⩽ v ⩽ 0,∫ v

0
(G(0) : G(x))dx if u ⩾ 0.

PROOF. Since ψL/K(v) = ϕ
−1
L/K(v), we have

ψ
′
L/K(ϕL/K(u)) =

1
ϕ ′L/K(u)

= (G0 : Gu) = (G(0) : G(ϕL/K(u))).

Setting x = ϕL/K(u), we obtain that ψ ′L/K(x) = (G(0) : G(x)). This proves the propo-
sition. □

4.21. Hasse-Hebrand theory allows to define the ramification filtration for
infinite Galois extensions. Namely, for any (finite or infinite) Galois extension of
local fields M/K define

Gal(M/K)(v) = lim←−
L/K finite

Gal(L/K)(v)

In particular, we can consider the ramification filtration on the absolute Galois
group GK of K. This filtration contains fundamental information about the field K.

Exercise 8. 1) Let ζpn be a pnth primitive root of unity. Set K = Qp(ζpn) and
G = Gal(K/Qp). We have the isomorphism

χn : G≃ (Z/pnZ)∗, g(ζpn) = ζ
χn(g)
pn .
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Set Γ = (Z/pnZ)∗. Let Γ(m) = {ā ∈ (Z/pnZ)∗ | a ≡ 1 (mod pm)} (in particular
Γ(0) = (Z/pnZ)∗ and Γ(n) = {1}).

a) Show that

χ(Gi) = Γ
(m), where m is the unique integer such that pm−1 ⩽ i < pm.

b) Give Hasse–Herbrand’s functions φK/Qp and ψK/Qp .
c) Set

Γ
(v) = Γ

(m) where m is the smallest integer ⩾ v.

Show that the upper ramifiation filtration on G is given by

χn(G(v)) = Γ
(v).

2) Let (ζpn)n⩾1 denote a system of pnth primitive roots of unity such that ζ
p
pn =

ζpn−1 . Set Kn = Qp(ζpn), K∞ = ∪
n⩾1

Kn and G∞ = Gal(K∞/Qp). Let UQp = Z∗p be the

group of units of Qp. We have the isomorphism:

χ : G≃UQp , g(ζpn) = ζ
χ(g)
pn , ∀n ⩾ 1.

For any v ⩾ 0 set

U (v)
Qp

=U (m)
Qp

, where m is the smallest integer ⩾ v.

Show that

χ(G(v)) =U (v)
Qp

, ∀v ⩾ 0.

4.22. Formula (4.9) can be written in terms of upper ramification subgroups:

THEOREM 4.23. Let L/K be a finite Galois extension. Then

vK(DL/K) =
∫

∞

−1

(
1− 1
|G(v)|

)
dv.

PROOF. We start with the computation of the derivative of ψL/K . From the
identity ψL/K ◦ϕL/K(u) = u, we have ψ ′L/K(ϕL/K(u))ϕ ′L/K(u) = 1. Since ϕ ′L/K(u) =
1/(G0 : Gu), this implies that

ψ
′
L/K(ϕL/K(u)) = (G0 : Gu).

Setting v = ϕL/K(u), we obtain the formula

ψ
′
L/K(v) = (G0 : GψL/K(v)) = (G0 : G(v)) = (G(0) : G(v)).

We pass to the proof of the theorem. By (4.9), we have

vK(DL/K) =
vL(DL/K)

e(L/K)
=

1
|G0|

∫
∞

−1
(|Gu|−1)du.
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Setting u = ψL/K(v) and taking into accout that ψ ′L/K(v) = (G(0) : G(v)) we can
write:

vK(DL/K) =
1
|G0|

∫
∞

−1
(|G(v)|−1)ψ ′L/K(v)dv

=
1
|G0|

∫
∞

−1
(|G(v)|−1)(G(0) : G(v))dv =

∫
∞

−1

(
1− 1
|G(v)|

)
dv.

The theorem is proved. □

The above theorem can be generalized to arbitrary (not necessarily Galois)
finite extensions as follows. For any v ⩾ 0 define

K(v)
= KG(v)

K .

THEOREM 4.24. For any finite extension L/K one has

(11) vK(DL/K) =
∫

∞

−1

(
1− 1

[L : L∩K(v)
]

)
dv

PROOF. See [4, Lemma 2.1]). □

5. Galois groups of local fields

5.1. The maximal unramified extension. In this section, we review the struc-
ture of Galois groups of local fields. Let K be a local field. Fix a separable clo-
sure K of K and set GK = Gal(K/K). Since the compositum of two unramified
(respectively tamely ramified) extensions of K is unramified (respectively tamely
ramified) we have the well defined notions of the maximal unramified (respectively
maximal tamely ramified) extension of K. We denote these extension by Kur and
Ktr respectively.

For each n there exists a unique unramified Galois extension Kn of degree
n, and we have a canonical isomorphism Gal(Kn/K) ≃ Z/nZ which sends the
Frobenius automorphism FrKn/K onto 1 mod nZ. If n | m, the diagram

Gal(Km/K)

��

∼ // Z/mZ

��
Gal(Kn/K)

∼ // Z/nZ

commutes. Passing to projective limits, we obtain an isomorphism

Gal(Kur/K) = lim←−
n

Gal(Kn/K)
∼−→ Ẑ,

where Ẑ = lim←−n
Z/nZ. To sum up, the maximal unramified extension Kur of K is

procyclic and its Galois group is generated by the Frobenius automorphism FrK :

Gal(Kur/K)
∼−→ Ẑ,

FrK ←→ 1.

FrK(x)≡ xqK (mod πK), ∀x ∈ OKur .
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Exercise 9. 1) Let ℓ be a prime number. Show that lim←−k
Z/ℓkZ≃ Zℓ.

2) Show that Ẑ≃∏
ℓ

Zℓ.

Exercise 10. Let K be a local field with residue field of characteristic p. Show
that

Kur = ∪
(n,p)=1

K(ζn).

5.2. The maximal tamely ramified extension. Let L/K be a finite Galois
extension with the Galois group G. Recall that G0 coincides with the inertia sub-
group IL/K of G and L0 := LG0 is the maximal unramified subextension of L/K. Set
L1 := LG1 . Then Gal(L1/L0)≃G0/G1 and Gal(L/L1) =G1. From Propositions 4.5
and 2.9 it follows that L1 is the maximal tamely ramified subextension Ltr of L/K.
To sup up, we have the tower of extensions

(12) L

G1

G0 Ltr

G0/G1

Lur

G/G0

K

DEFINITION 5.3. The group PL/K := G1 is called the wild inertia subgroup.

We remark that PL/K is a p-group (its order is a power of p).
Passing to direct limit in the above diagram (12), we have:

(13) K

PK

IK Ktr

Kur

Ẑ

K

Consider the exact sequence

(14) 1→ Gal(Ktr/Kur)→ Gal(Ktr/K)→ Gal(Kur/K)→ 1.

Here Gal(Kur/K)≃ Ẑ. From the explicit description of tamely ramified extensions
(see also Exercise 4), it follows that Ktr is generated over Kur by the roots π

1/n
K ,
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(n, p) = 1 of any uniformizer πK of K. Since

Gal(Kur(π
1/n
K )/Kur)≃ Z/nZ (not canonically)

this immediately implies that

Gal(Ktr/Kur)≃ lim←−
(n,p)=1

Z/nZ≃∏
ℓ̸=p

Zl.

REMARK 5.4. It is not difficult to discribe the group Gal(Ktr/K) in terms of
generators and relations.

5.5. Local class field theory. We say that a Galois extension L/K is abelian if
Gal(L/K) is an abelian group. It’s easy to see that the compositum of two abelian
extensions is abelian. Denote by Kab the compositum of all abelian extensions of
K and by Gab

K := Gal(Kab/K) its Galois group. Local class field theory gives an
explicit description of Gab

K in terms of K.

THEOREM 5.6. There exists a canonical group homomorphism (called the
reciprocity map) with dense image

θK : K∗→ Gab
K

such that
i) For any finite abelian extension L/K, the homomorphism θK induces an

isomorphism

θL/K : K∗/NL/K(L
∗)
∼−→ Gal(L/K),

where NL/K : L→ K is the norm map.
ii) If Kur/K is the maximal unramified extension of K, then for any uni-

formizer πK ∈ K∗ the restriction of the automorphism θK(πK) on Kur co-
incides with the Frobenius FrL/K , and we have a commutative diagram

K∗
θK //

vK
��

Gab
K

��
Ẑ // Gal(Kur/K),

where the bottom map sends 1 to FrK . Equivalently, for any x ∈ K∗, the
automorphism θK(x) acts on Kur by

θK(x)|Kur = FrvK(x)
K .

REMARK 5.7. Local class field theory was developed by Hasse. The modern
approach is based on the cohomology of finite groups (see [13] or [3, Chapter VI],
written by Serre).

It can be shown, that the reciprocity map is compatible with the ramification
filtration in the following sense. For any real v ⩾ 0, set U (v)

K =U (n)
K , where n is the

smallest integer ⩾ v. Then

(15) θK

(
U (v)

K

)
= (Gab

K )(v), ∀v ⩾ 0.
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For the classical proof of this result, see [13, Chapter XV].

5.8. Ramification jumps.

DEFINITION. Let L/K be a Galois extension of local fields (finite or infinite).
We say that v ⩾−1 is a ramification jump of L/K if

Gal(L/K)(v+ε) ̸= Gal(L/K)(v), ∀ε > 0.

From (15) it follows that the ramification jumps of Kab/K are the integers −1,
0, 1, . . . . Under the reciprocity map, the inertia subgroup IKab/K of Gab

K is isomor-
phic to UK and the wild ramification subgroup PKab/K of IKab/K is isomorphic to

U (1)
K . Therefore, for the maximal abelian tamely ramified extension Kab,tr we have

Gal(Kab,tr/Kur)≃UK/U (1)
K ≃ k∗K .

If L/K is an abelian extension with Galois group G, then by Galois theory,
G = Gab

K /H for some closed subgroup H ⊂ Gab
K . From Herbrand’s theorem we

have G(v) = (Gab
K )(v)/H ∩ (Gab

K )(v). Therefore from (15) it follows that the jumps
of the ramification filtration on G are integers (theorem of Hasse-Arf). Assume, in
addition, that L/K is wildly ramified i.e. totally ramified of degree power of p. The
canonical projection of Gab

K onto G induces a diagram

0 // PKab/K
//

��

Gab
K

��

// Gal(Kab,tr/K) //

��

0

0 // PL/K
// G // G/PL/K

// 0.

Since L/K is wildly ramified, G = PL/K , and one has

G≃ PKab/K/(H ∩PKab/K).

Therefore
G(v) ≃ P(v)

Kab/K/(H ∩P(v)
Kab/K), v ⩾ 1.

We can write this property in terms of the group of units UK . Namely, let N de-
note the subgroup of U (1)

K that corresponds to H ∩PKab/K under the isomorphism

PKab/K ≃U (1)
K . Then we have an isomorphism

ρ : G≃U (1)
K /N.

From the description of the ramification in terms of the reciprocity map (15), we
obtain that

(16) ρ

(
G(v)

)
≃U (v)

K /(N∩U (v)
K ), v ⩾ 1.

Let denote by v0 < v1 < v2 < .. . the ramification jumps of L/K. Since the quotients
U (i)

K /U (i)
K are p-elementary abelian groups (each non trivial element has order p),

we conclude that all quotients G(vi)/G(vi+1) are p-elementary. This also can be
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proved directly using Proposition 4.5 without any reference to the reciprocity map
θK .

6. Ramification in Zp-extensions

We illustrate the ramification theory of infinite extensions on the example of
Zp-extensions.

DEFINITION. A Zp-extension is a Galois extension L/K with Galois group
isomorphic to Zp.

In this section, we assume that K∞/K is a totally ramified Zp-extension of
local fields of characteristic 0 and set Γ = Gal(K∞/K). For any n, pnZp is the
unique open subgroup of Zp of index pn and we denote by Γ(n) the corresponding
subgroup of Γ. Set Kn = LΓ(n). Then Kn is the unique subextension of K∞/K of
degree pn over K. We have

K∞ = ∪
n⩾1

Kn, Gal(Kn/K)≃ Z/pnZ.

Note that K∞/K is abelian by definition. Let (vi)i⩾0 denote the increasing
sequence of ramification jumps of L/K. Since Γ≃Zp and all quotients Γ(vi)/Γ(vi+1)

are p-elementary, we obtain that

Γ
(vi) = piZp, ∀i ⩾ 1.

THEOREM 6.1 (Tate [14]). Let K be a finite extension of Qp and let K∞/K
be totally ramified Zp-extension. Let (vi)i⩾1 denote the increasing sequence of
ramification jumps of K∞/K. Then

i) There exists i0 such that

vi+1 = vi + eK , ∀i ⩾ i0.

ii) There exists a constant c such that for all n ⩾ 1

vK(DKn/K) = eKn+ c+an p−n,

where (an)n⩾1 is bounded.

We first prove the following auxiliary lemma:

LEMMA 6.2. Let K/Qp be a finite extension and let eK = e(K/Qp). Then the
following holds true:

i) The series

log(1+ x) =
∞

∑
m=1

(−1)m+1 xm

m

converges for all x ∈mK .
ii) The series

exp(x) =
∞

∑
m=0

xm

m!

converges for all x such that vK(x)> eK
p−1 .
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iii) For any integer n > eK
p−1 we have isomorphisms

log : U (n)
K →mn

K , exp : mn
K →U (n)

K

which are inverse to each other.

PROOF. We have
vK(m)⩽ eK logp(m),

and
vK(m!) = eK

(
[m/p]+ [m/p2]+ · · ·

)
⩽

eKm
p−1

.

This implies the convergence of the series. Other assertions can be proved by
routine computations. □

COROLLARY 6.3. For any integer n > eK
p−1(

U (n)
K

)p
=U (n+eK)

K .

PROOF.
(

U (n)
K

)p
and U (n+eK)

K have the same image under log . □

PROOF OF THE THEOREM.
i) We apply the arguments of Section 5.8 to our setting with L=K∞ and G=Γ.

Write Γ = Gab
K /H with some closed subgroup H of Gab

K . Let N denote the subgroup
of U (1)

K that corresponds to PKab/K ∩H under the reciprocity map. Set

U (v) =U (v)
K /(N∩U (v)

K ), ∀v ⩾ 1.

Then the isomorphism (16) reads

ρ(Γ(v))≃U (v), v ⩾ 1.

Let γ be a topological generator of Γ. Then γn = γ pn
is a topological generator

of Γ(n). Let i0 be an integer such that

ρ(γi0) ∈U (m0),

with some integer m0 >
eK

p−1 . Fix such i0 and assume that, for this fixed i0, m0 is
the biggest integer satisfying these conditions. Since γi0 generates Γ(i0), this means
that

ρ(Γ(i0)) = U (m0), but ρ(Γ(i0)) ̸= U (m0+1).

Therefore m0 is the i0-th ramification jump for K∞/K, i.e.

m0 = vi0 .

We can write ρ(γi0) = x, where x = x (mod (N ∩U (m0)
K )) and x ∈U (m0)

K \U (m0+1)
K .

By Corollary 6.3,

xpn ∈U (m0+eKn)
K \U (m0+eKn+1)

K , ∀n ⩾ 0.

Since ρ(γi0+n) = xpn
and γi0+n generates Γ(m0 +n), this implies that

ρ(Γ(i0 +n)) = U (m0+neK) but ρ(Γ(i0 +n)) ̸= U (m0+neK+1).



6. RAMIFICATION IN Zp-EXTENSIONS 31

This shows that for each integer n ⩾ 0 the ramification filtration has a jump at
m0 +neK and

Γ
(m0+neK) = Γ(i0 +n).

In other terms, for any real v ⩾ vi0 = m0 we have

Γ
(v) = Γ(i0 +n+1) if vi0 +neK < ν ⩽ vi0 +(n+1)eK .

This shows that vi0+n = vi0 + eKn for all n ⩾ 0, and the assertion i) is proved.

ii) We prove ii) applying Theorem 4.23. For any n > 0, set G(n) = Γ/Γ(n).
We have

vK(DKn/K) =
∫

∞

−1

(
1− 1
|G(n)(v)|

)
dv.

By Herbrand’s theorem, G(n)(v) = Γ(v)/(Γ(n)∩Γ(v)). Since Γ(vn) = Γ(n), the ram-
ification jumps of G(n) are v0,v1, . . . ,vn−1, and we have

(17) |G(n)(v)|=

{
pn−i, if vi−1 < v ⩽ vi,

1, if v > vn−1

(for i = 0 we set vi−1 := 0 to uniformize notation). Assume that n > i0. Then

vK(DKn/K) = A+
∫ vn−1

vi0

(
1− 1
|G(n)(v)|

)
dv,

where A =
∫ vi0

−1

(
1− 1
|G(n)(v)|

)
dv. We evaluate the second integral

∫ vn−1

vi0

(
1− 1
|G(n)(v)|

)
dv =

n−1

∑
i=i0+1

(vi− vi−1)

(
1− 1
|G(n)(v)|

)
=

n−1

∑
i=i0+1

eK

(
1− 1

pn−i

)
(here we use i) and (17). An easy computation gives

n−1

∑
i=i0+1

eK

(
1− 1

pn−i

)
= eK(n− i0−1)+

eK

p−1

(
1− 1

pn−i0−1

)
.

Setting c = A− eK(i0 +1)+ eK
p−1 , we see that for n > i0

vK(DKn/K) = c+ eKn− 1
(p−1)pn−i0−1 .

The theorem is proved.
□





CHAPTER 2

Almost étale extensions

1. Norms and traces

1.0.1. The results proved in this section are technical by the nature, but they
play a crucial role in our discussion of deeply ramified extensions and the field of
norms functor. They can be seen as a first manifestation of a deep relation between
characteristic 0 and characteristic p cases. In this section, we assume that L/K is a
finite extension of local fields of characteristic 0.

LEMMA 1.1. One has
TrL/K(m

n
L) =mr

K ,

where r =
[

vL(DL/K)+n
e(L/K)

]
.

PROOF. From the definition of the different if follows immediately that D−1
L/K

is the maximal fractional ideal such that

TrL/K(D
−1
L/K) = OK .

Set δ = vL(DL/K) and e = e(L/K). Then

TrL/K(m
n
Lm
−r
K ) = TrL/K(m

n
Lm
−er
L )⊂ TrL/K(m

n−(δ+n)
L ) = TrL/K(D

−1
L/K) = OK ,

and therefore TrL/K(m
n
L) ⊂ mr

K . Conversely, TrL/K(m
n
L) is an ideal of OK , and we

can write in in the form TrL/K(m
n
L) =ma

K . Then TrL/K(m
n
Lm
−a
K ) = OK and therefore

mn
Lm
−a
K ⊂D−1

L/K . This implies that

n−ae ⩾−δ .

Therefore a ⩽
[

n+δ

e

]
= r and mr

K ⊂ TrL/K(m
n
L). The lemma is proved.

□

1.1.1. Assume that L/K is a totally ramified Galois extension of degree p.
Set G = Gal(L/K) and denote by t the maximal natural number such that Gt = G
(and therefore Gt+1 = {1}). Formula for the different from Proposition 4.9 reads
in our case:

(18) vL(DL/K) = (p−1)(t +1).

LEMMA 1.2. Then for any x ∈mn
L

NL/K(1+ x)≡ 1+NL/K(x)+TrL/K(x) (mod ms
K),

where s =
[
(p−1)(t+1)+2n

p

]
.

33
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PROOF. Set G = Gal(L/K) and for each 1 ⩽ n ⩽ p denote by Cn the set of all
n-subsets {g1, . . . ,gn} of G (note that gi ̸= g j if i ̸= j). Then

NL/K(1+ x) = ∏
g∈G

(1+g(x)) = 1+NL/K(x)+TrL/K(x)

+ ∑
{g1,g2}∈C2

g1(x)g2(x)+ · · ·+ ∑
{g1,...gp−1}∈Cp−1

g1(x) · · ·gp−1(x).

It’s clear that the rule

g⋆{g1, . . . ,gn}= {gg1, . . . ,ggn}
defines an action of G on Cn. Moreover, from the fact that |G| = p is a prime
number, it’s easy to see that all stabilizers are trivial, and therefore each orbit has
p elements. This implies that each sum

∑
{g1,...gn}∈Cn

g1(x) · · ·gn(x), 2 ⩽ n ⩽ p−1

can be written as the trace TrL/K(xn) of some xn ∈m2n
L . From (18) and Lemma 1.1

it follows that TrL/K(xn) ∈ms
K . The lemma is proved. □

LEMMA 1.3. For any x ∈mn
L

NL/K(1+ x)≡ 1+NL/K(x)+TrL/K(x) (mod ms
K),

where s =
[
(p−1)(t+1)+2n

p

]
.

PROOF. Set G = Gal(L/K) and for each 1 ⩽ n ⩽ p, denote by Cn the set of all
n-subsets {g1, . . . ,gn} of G (note that gi ̸= g j if i ̸= j). Then

NL/K(1+ x) = ∏
g∈G

(1+g(x)) = 1+NL/K(x)+TrL/K(x)

+ ∑
{g1,g2}∈C2

g1(x)g2(x)+ · · ·+ ∑
{g1,...gp−1}∈Cp−1

g1(x) · · ·gp−1(x).

It’s clear that the rule

g⋆{g1, . . . ,gn}= {gg1, . . . ,ggn}
defines an action of G on Cn. Moreover, from the fact that |G| = p is a prime
number, it’s easy to see that all stabilizers are trivial, and therefore each orbit has
p elements. This implies that each sum

∑
{g1,...gn}∈Cn

g1(x) · · ·gn(x), 2 ⩽ n ⩽ p−1

can be written as the trace TrL/K(xn) of some xn ∈m2n
L . From (18) and Lemma 1.1

it follows that TrL/K(xn) ∈ms
K . The lemma is proved. □

COROLLARY 1.4. Let L/K is a totally ramified Galois extension of degree p.
Then

vK(NL/K(1+ x)−1−NL/K(x))⩾
t(p−1)

p
.
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PROOF. From Lemmas 1.1 and 1.3 if follows that

vK(NL/K(1+ x)−1−NL/K(x))⩾
[
(p−1)(t +1)

p

]
,

and it’s easy to see that[
(p−1)(t +1)

p

]
=

[
(p−1)t

p
+1− 1

p

]
⩾

t(p−1)
p

.

□

2. Deeply ramified extensions

2.0.1. In this section, we review the theory of deeply ramified extensions of
Coates– Greenberg [4]. This theory goes back to the fundamental paper of Tate
[14], where the case of Zp-extensions was studied and applied to the proof of the
Hodge–Tate decomposition for p-divisible groups.

Let K be a local field of characteristic 0. In this section, we consider an infinite
algebraic extension K∞/K. Since for each m the number of algebraic extensions of
K of degree m is finite, we can always write K∞ in the form

K∞ =
∞

∪
n=0

Kn, K0 = K, Kn ⊂ Kn+1, [Kn : K]< ∞.

Following [5], we define the different of K∞/K as the intersection of differents of
its finite subextensions.

DEFINITION. The different of K∞/K is defined by

DK∞/K =
∞

∩
n=0

(DKn/KOK∞
),

where DKn/KOK∞
denotes the ideal in OK∞

generated by DKn/K .

Let L∞ be a finite extension of K∞. Then L∞ = K∞(α), where α is a root of
an irreducible polynomial f (X) ∈ K∞[X ]. The coefficients of f (X) lie in a finite
extension K f of K. Let

n0 = min
{

n ∈ N | f (X) ∈ Kn[X ]
}
.

Setting Ln = Kn(α) for all n ⩾ n0, we can write

L∞ =
∞

∪
n=n0

Ln.

In what follows we will assume that n0 = 0 without loss of generality. Note that
[Ln : Kn] = deg( f ) doesn’t depend on n ⩾ 0.

PROPOSITION 2.1. i) If m ⩾ n, then

DLn/KnOLm ⊂DLm/Km .

ii) One has

DL∞/K∞
=

∞

∪
n=0

(DLn/KnOL∞
).



36 2. ALMOST ÉTALE EXTENSIONS

PROOF. i) We consider the bilinear form provided by the trace map (see Chap-
ter I, Section 3) :

tLn/Kn : Ln×Ln→ Kn, tLn/Kn(x,y) = TrLn/Kn(xy).

Let {ek}s
k=1 be a basis of OLn over OKn , and let {e∗k}s

k=1 denote the dual basis. Then

DLn/Kn = OLne∗1 + · · ·+OLne∗s .

Since {ek}s
k=1 is also a basis of Lm over Km, any x ∈D−1

Lm/Km
can be written as

x =
s

∑
k=1

ake∗k .

Then
ak = tLm/Km(x,ek) ∈ OKm , ∀1 ⩽ k ⩽ s,

and we have:
x ∈ OKme∗1 + · · ·+OKme∗s ⊂D−1

Ln/Kn
OLm .

Therefore D−1
Lm/Km

⊂D−1
Ln/Kn

OLm , and, by consequence, DLn/KnOLm ⊂DLm/Km .

ii) With the same argument as in the proof of i), we have
∞

∪
n=0

(DLn/KnOL∞
)⊂DL∞/K∞

.

We need to prove that DL∞/K∞
⊂

∞

∪
n=0

(DLn/KnOL∞
) or equivalently that

∞

∩
n=0

(D−1
Ln/Kn

OL∞
)⊂D−1

L∞/K∞
.

Let x∈
∞

∩
n=0

(D−1
Ln/Kn

OL∞
) and y∈OL∞

. Choosing n such that x∈D−1
Ln/Kn

and y∈OLn ,

we have
tL∞/K∞

(x,y) = tLn/Kn(x,y) ∈ OKn ⊂ OK∞
.

Hence x ∈D−1
L∞/K∞

, and the inclusion
∞

∩
n=0

(D−1
Ln/Kn

OL∞
)⊂D−1

L∞/K∞
is proved. □

DEFINITION. i) For any algebraic extension of local fields M/K (finite or in-
finite) we set

vK(DM/K) = inf{vK(x) | x ∈DM/K}.

ii) We say that M/K has finite conductor if there exists v ⩾ 0 such that M ⊂ K(v)
.

If that is the case, we call the conductor of M the number

c(M) = inf{v |M ⊂ K(v−1)}.

THEOREM 2.2 (Coates–Greenberg). Let K∞/K be an algebraic extension of
local fields. Then the following assertions are equivalent:

i) vK(DK∞/K) = +∞;
ii) K∞/K doesn’t have finite conductor;
iii) For any finite extension L∞/K∞ one has

vK(DL∞/K∞
) = 0;
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iv) For any finite extension L∞/K∞ one has

TrL∞/K∞
(mL∞

) =mK∞
.

Below we prove that
i)⇔ ii)⇒ iii)⇒ iv).

For further detail, see [4]. We start with an auxiliary lemma.

LEMMA 2.3. For any finite extension M/K, one has

c(M)

2
⩽ vK(DM/K)⩽ c(M).

PROOF. We have

[M : M∩K(v)
] = 1, for any v > c(M)−1,

[M : M∩K(v)
]⩾ 2, if −1 ⩽ v < c(M)−1.

Therefore

vK(DM/K) =
∫

∞

−1

(
1− 1

[M : M∩K(v)
]

)
dv ⩽

∫ c(M)−1

−1
dv = c(M),

and

vK(DM/K) =
∫

∞

−1

(
1− 1

[M : M∩K(v)
]

)
dv ⩾

1
2

∫ c(M)−1

−1
dv =

c(M)

2
.

The lemma is proved. □

2.3.1. We prove that i)⇔ ii). First assume that vK(DK∞/K) = +∞. For any
c> 0, there exists K ⊂M⊂K∞ such that vK(DM/K)⩾ c. By Lemma 2.3, c(M)⩾ c.
This shows that K∞/K doesn’t have finite conductor.

Conversely, assume that K∞/K doesn’t have finite conductor. Then for each
c > 0 there exists a nonzero element β ∈ K∞ such that β /∈ K(c)

. Let M = K(β ).
Then c(M)> c and vK(DM/K)⩾

c
2 by Lemma 2.3. Therefore vK(DK∞/K) = +∞.

2.3.2. For any algebraic extension M/K, set M(v) := MG(v)
K = M∩K(v)

.

LEMMA 2.4. Assume that w is such that L⊂ K(w)
. Then for any n ⩾ 0

[Ln : L(w)
n ] = [Kn : K(w)

n ].

PROOF. Recall that if M/F is a Galois extension and E/F is an arbitrary ex-
tension such that M∩E = F, then M and E are linearly disjoint over F.

Since G(w)
K is a normal subgroup of KK , the extension K(w)

/K is Galois. Hence
K(w)

/Kn ∩K(w) is also a Galois extension, and the fields K(w) an Kn are linearly
disjoint over K(w)

n = Kn ∩K(w)
. Since L(w)

n = K(w) ∩ Ln is a subfield of K(w)
, we

conclude that L(w)
n and Kn are linearly disjoint over K(w)

n . Therefore

(19) [Kn : K(w)
n ] = [KnL(w)

n : L(w)
n ].
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Clearly KnL(w)
n = Kn(K

(w) ∩ Ln) ⊂ Ln. On the other hand, since Ln = Kn · L and
L⊂ K(w)

, we have Ln ⊂ Kn(K
(w)∩Ln) = KnL(w)

n . Therefore

Ln = KnL(w)
n .

Together with (19), this proves the lemma. □

2.4.1. We prove that ii)⇒ iii). By the multiplicativity of the different, for
any n ⩾ 0 we have

vK(DLn/Kn) = vK(DLn/K)− vK(DKn/K).

Let w be such that L⊂ K(w)
. Using formula (11) and Lemma 2.4, we obtain that

vK(DLn/Kn) =
∫

∞

−1

(
1

[Kn : K(v)
n ]
− 1

[Ln : L(v)
n ]

)
dv =

∫ w

−1

(
1

[Kn : K(v)
n ]
− 1

[Ln : L(v)
n ]

)
dv ⩽

∫ w

−1

dv

[Kn : K(v)
n ]

.

Since [Kn : K(v)
n ] ⩾ [Kn : K(w)

n ] for any v ⩽ w, this gives the following estimate for
the different:

vK(DLn/Kn)⩽
w+1

[Kn : K(w)
n ]

=
w+1

[KnK(w) : K(w)
]
.

It’s clear that the sequence [KnK(w) : K(w)
] is increasing when n→+∞, and we only

need to show that it goes to infinity. We prove this by contradiction. Assume that
[KnK(w) : K(w)

] is bounded above. Then there exists n0 such that [KnK(w) : K(w)
]

is constant for n ⩾ n0. Hence KnK(w)
= Kn0K(w) for n ⩾ n0 and we conclude that

K∞K(w)
= Kn0K(w)

. Since Kn0/K is finite, there exists v ⩾ w such that Kn0 ⊂ K(v)
.

Then K∞ ⊂ Kn0K(w) ⊂ K(v)
. Therefore K∞/K has finite conductor, contrary to our

assumption.
2.4.2. We prove that iii)⇒ iv). We consider two cases.
a) First assume that the set {e(Kn/K) | n ⩾ 0} is bounded. Then there exists n0

such that e(Kn/Kn0) = 1 for any n ⩾ n0. Therefore e(Ln/Ln0) = 1 for any n ⩾ n0
and by the mutiplicativity of the different

DLn/Kn =DLn0/Kn0
OLn , ∀n ⩾ n0.

From Proposition 2.1 and assumption iii) it follows that DLn/Kn =OLn for all n⩾ n0.
Therefore Ln/Kn are unramified and Lemma 1.1 (or just the well known surjectivity
of the trace map in unramified extensions) gives:

TrLn/Kn(mLn) =mKn , for all n ⩾ n0.

Thus TrL∞/K∞
(mL∞

) =mK∞
.
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b) Now assume that the set {e(Kn/K) | n ⩾ 0} is unbounded. Let x ∈ mK∞
.

Then there exists n such that x ∈mKn . By Lemma 1.1,

TrLn/Kn(mLn) =mrn
Kn
, rn =

[
vLn(DLn/Kn)+1

e(Ln/Kn)

]
.

From our assumptions and Proposition 2.1 it follows that we can choose n such
that in addition

vK(DLn/Kn)+
1

e(Ln/K)
⩽ vK(x).

Then

rn ⩽
vLn(DLn/Kn)+1

e(Ln/Kn)
=

(
vK(DLn/Kn)+

1
e(Ln/K)

)
e(Kn/K)⩽ vKn(x).

Since TrLn/Kn(mLn) is an ideal in OKn , this implies that x ∈ TrLn/Kn(mLn), and the
inclusion mK∞

⊂ TrL∞/K∞
(mL∞

) is proved. Since the converse inclusion is trivial,
we have mK∞

= TrL∞/K∞
(mL∞

).

DEFINITION. We say that an extension F/K of a local field K of characteristic
0 is deeply ramified if it satisfies the equivalent conditions of Theorem 2.2.

Exercise 9. i) Show that G(0)
K = IK and that the wild ramification subgroup

Gal(K/Ktr) can be written as

Gal(K/Ktr) = ∪
ε>0

G(ε)
K

(topological closure of ∪
ε>0

G(ε)
K ).

ii) Show that Ktr/K has finite conductor and determine it.

3. Almost étale extensions

3.1. We introduce, in our very particular setting, the notion of almost etale
extension.

DEFINITION. A finite extension L/K of non archimedean fields is almost etale
if and only if

TrL/K(mL) =mK .

Examples. 1) An unramified extension of local fields is almost etale.
2) Assume that K∞ is a deeply ramified extension of a local field K of char-

acteristic 0. Then any finite extension of K∞ is almost etale. This was proved in
Theorem 2.2.

3.1.1.

THEOREM 3.2. Assume that F is a deeply ramified extension of a local field K
of characteristic 0. Then

CGF
K = F̂ .

Fix an absolute value | · |K on K. Recall (see Section 1) that | · |K extends in a
unique way to an absolute value on CK , which we denote again by | · |K .

We first prove the following lemma.
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LEMMA 3.3. Let L/F be a finite Galois extension of the deeply ramified ex-
tension F, and let G = Gal(L/F). Then for any α ∈ L and any c > 1 there exists
β ∈ F such that ∣∣α−β

∣∣
K < c ·max

g∈G

∣∣g(α)−α
∣∣
K .

PROOF. Let c > 1. By Theorem 2.2 iv), there exists x ∈ OE such that y =
TrL/F(x) satisfies

1/c < |y|K ⩽ 1.

Set β =
1
y ∑

g∈G
g(αx). Then

|α−β |K =

∣∣∣∣∣αy ∑
g∈G

g(x)− 1
y ∑

g∈G
g(αx)

∣∣∣∣∣
K

=

∣∣∣∣∣1y ∑
g∈G

g(x)(α−g(α))

∣∣∣∣∣
K

⩽
1
|y|K
·max

g∈G

∣∣g(α)−α
∣∣
K .

The lemma is proved. □

3.3.1. Proof of Theorem 3.2. Let α ∈ CGF
K . Choose a sequence (αn)n∈N of

elements αn ∈ K such that |αn−α|K < p−n. Then

|g(αn)−αn|K = |g(αn−α)− (αn−α)|K < p−n, ∀g ∈ GF .

By Lemma 3.3, for each n there exists βn ∈ F such that |βn−αn|K < p−n. Then

α = lim
n→+∞

βn ∈ F̂ .

The theorem is proved.
□

4. The normalized trace

4.1. In this section, K∞/K is a totally ramified Zp-extension. Fix a topologi-
cal generator γ of Γ. For any x ∈ Kn set

TK∞/K(x) =
1
pn TrKn/K(x).

It’s clear that this definition doesn’t depend on the choice of n. Therefore we have
a well defined homomorphism

TK∞/K : K∞→ K.

Note that TK∞/K(x)= x for x∈K. Our first goal is to prove that TK∞/K is continuous.
In this section, we denote by | · |K the absolute value on K normalized as fol-

lows

|x|K =
1

qvK(x)
, x ∈ K,

where q = |kK |. In particular, |p|K = 1/qeK , where eK = e(K/Qp). We extend this
absolute value to CK .
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PROPOSITION 4.2 (Tate). i) There exists a constant c > 0 such that

|TK∞/K(x)− x|K ⩽ c|γ(x)− x|K , ∀x ∈ K∞.

ii) The map TK∞/K is continuous and extends by continuity to K̂∞.

PROOF. First, we prove that i)⇒ ii). Let x ∈ K∞. Then

|TK∞/K(x)|K = |(TK∞/K(x)− x)+ x|K ⩽ max{|TK∞/K(x)− x|K , |x|K}.

If we assume i), then

|TK∞/K(x)− x|K ⩽ c|γ(x)− x|K ⩽ cmax{|γ(x)|K , |x|K}= c|x|K ,

and we obtain that

|TK∞/K(x)|K ⩽ A|x|K , A = max{1,c}.

Since TK∞/K is a K-linear map, this inequality implies that TK∞/K is continuous.
Now we prove i). We split the proof in several steps.
a) By Proposition 6.1, vK(DKn/K) = eKn+ an/pn, where the sequence an is

bounded. Therefore

vK(DKn/Kn−1) = vK(DKn/K)− vK(DKn−1/K) = eK +αn/pn−1.

where αn is bounded. Lemma 1.1 for the extension Kn/Kn−1 can be written in the
form

vKn−1(TrKn/Kn−1(x))⩾
[

vKn(x)+ vKn(DKn/Kn−1)

e(Kn/Kn−1)

]
⩾

vKn(x)+ vKn(DKn/Kn−1)

e(Kn/Kn−1)
−1.

Since vKn(·) = pnvK(·) and e(Kn/Kn−1) = p, we have:

vK(TrKn/Kn−1(x))⩾ vK(x)+ vK(DKn/Kn−1)−
1

pn−1 .

Taking into account the formula for the different, we obtain that

vK(TrKn/Kn−1(x))⩾ vK(x)+ eK(1−bn/pn−1)

for some bounded sequence bn. Choose b > 0 such that bn < b for all n. Then

vK(TrKn/Kn−1(x))⩾ vK(x)+ eK(1−b/pn−1).

Passing to absolute values, we can write this formula in the following form:

(20) |TrKn/Kn−1(x)|K ⩽ |p|1−b/pn−1

K |x|K , ∀x ∈ Kn.

b) Set γn = γ pn
. For any x ∈ Kn we have

TrKn/Kn−1(x) =
p−1

∑
k=0

γ
k
n−1(x).

Therefore

TrKn/Kn−1(x)− px =
p−1

∑
k=0

(γk
n−1(x)− x) =

p−1

∑
k=1

(1+ γn−1 + · · ·γk−1
n−1)(γn−1(x)− x).
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and we obtain that∣∣∣∣1pTrKn/Kn−1(x)− x
∣∣∣∣
K
⩽ |p|−1

K · |γn−1(x)− x|K , ∀x ∈ Kn.

Since γn−1(x)− x = (1+ γ + · · ·+ γ pn−1−1)(γ(x)− x), we also have

(21)
∣∣∣∣1pTrKn/Kn−1(x)− x

∣∣∣∣
K
⩽ |p|−1

K · |γ(x)− x|K , ∀x ∈ Kn.

c) We prove by induction on n that

(22)
∣∣TK∞/K(x)− x

∣∣
K ⩽ cn · |γ(x)− x|K , ∀x ∈ Kn,

where c1 = |p|K and cn = cn−1 · |p|−b/pn−1

K . For n = 1, this follows from (21). For
n ⩾ 2 and x ∈ Kn, we write

TK∞/K(x)− x =
(

1
p

TrKn/Kn−1(x)− x
)
+(TK∞/K(y)− y), y =

1
p

TrKn/Kn−1(x).

The first term can be bounded by (21). For the second term, we have

|TK∞/K(y)− y|K ⩽ cn−1|γ(y)− y|K = cn−1|p|−1
K |TrKn/Kn−1(γ(x)− x)|K

⩽ cn−1|p|−b/pn−1

K |γ(x)− x|K .
(Here the last inequality follows from (20)). This proves (22).

d) Set c = c1
∞

∏
n=2
|p|−b/pn−1

K = c1|p|−b/(p−1)
K . Then cn < c for all n ⩾ 1, and from

(22) we obtain that∣∣TK∞/K(x)− x
∣∣
K ⩽ c · |γ(x)− x|K , ∀x ∈ K∞,

This proves the first assertion of the proposition. The second assertion is immedi-
ate. □

DEFINITION. The map TK∞/K : K̂∞→ K is called the normalized trace.

4.2.1. Since TK∞/K is an idempotent map, we have a decomposition

K̂∞ = K⊕ K̂◦∞,

where K◦∞ = ker(TK∞/K).

THEOREM 4.3. i) The map λ − 1 is bijective, with a continuous inverse, on
K̂◦∞.

ii) For any λ ∈U (1)
K which is not a root of unity, the map γ−λ is bijective, with

a continuous inverse, on K̂∞.

PROOF. a) Write Kn = K⊕K◦n , where K◦n = ker(TK∞/K)∩Kn. Since γ − 1 is
injective on K◦n , and K◦n has finite dimension over K, γ−1 is bijective on K◦n and on
K◦∞ = ∪

n⩾0
K◦n . Let ρ : K◦∞→ K◦∞ denote its inverse. From Proposition 4.2 we have

that
|x|K ⩽ c|(γ−1)(x)|K , ∀x ∈ K◦∞,
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and therefore
|ρ(x)|K ⩽ c|x|K , ∀x ∈ K◦∞.

Thus ρ is continuous and extends to K̂◦∞. This proves the theorem for λ = 1.
b) Assume that λ ∈U (1)

K satisfies

|λ −1|K < c−1.

Then ρ(γ−λ ) = 1+(1−λ )ρ and the series

θ =
∞

∑
i=0

(λ −1)i
ρ

i

converges to an operator θ such that ρθ(γ −λ ) = 1. Thus γ −λ is invertible on
K̂◦∞. Since λ ̸= 1, it is also invertible on K and therefore invertible on K̂∞.

c) In the general case, we choose n such that |λ pn−1|K < c−1. Since λ pn ̸= 1,
then by part b), γ pn−λ pn

is invertible on K̂∞. Since

γ
pn−λ

pn
= (γ−λ )

pn−1

∑
i=0

γ
pn−i−1

λ
i,

γ−λ is invertible too. The theorem is proved. □

4.4. Let η : Γ→U (1)
K be a continuous character. We denote by K̂∞(η) the

K-vector space K̂∞ equipped with the η-twisted action of Γ, namely

g⋆ x = η(γ) · γ(x), ∀γ ∈ Γ, x ∈ K̂∞(η).

We will also consider η as the character

GK → Γ→U (1)
K

and denote by CK(η) the field CK equipped with the η-twisted action of GK .

THEOREM 4.5 (Tate). Let K∞/K be a totally ramified Γ-extension. Then the
following holds true:

i) K̂Γ
∞ = K and CGK

K = K.

ii) If η : Γ→U (1)
K is a character with infinite image η(Γ), then K̂∞(η)Γ = 0

and CK(η)GK = 0.

PROOF. We combine Theorems 3.2 and 4.3. Let γ be a topological generator
of Γ. Since τ = γ−1 is bijective on K̂◦∞, we have (K̂◦∞)

Γ = 0 and

K̂Γ
∞ = KΓ⊕ (K̂◦∞)

Γ = K.

Moreover,

CGK
K =

(
CGK∞

K

)Γ

= K̂Γ
∞ = K.

If η is a nontrivial character, set λ = η(γ). Then

K̂∞(η)Γ = {x ∈ K̂∞ | γ(x) = λ
−1x}
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Again by Theorem 4.3, K̂◦∞(η)Γ = 0. Since λ ̸= 1, we also have K(η)Γ = 0. Thus
K̂∞(η)Γ = 0. Finally

CK(η)GK =
(
CK(η)GK∞

)Γ
=
(

CGK∞

K (η)
)Γ

= K̂∞(η)Γ = 0.

□



CHAPTER 3

Perfectoid fields

1. Perfectoid fields

1.0.1. The notion of perfectoid field was introduced in Scholze’s fundamental
paper [12] as a far-reaching generalization of Fontaine’s constructions [7], [8]. Fix
a prime number p. Let E be a field equipped with a non-archimedean absolute
value | · |E : E → R+ such that |p|E < 1. Note that we don’t exclude the case of
characteristic p, where the last condition holds automatically. We denote by OE
the ring of integers of E and by mE the maximal ideal of OE .

DEFINITION. Let E be a field equipped with an absolute value | · |E : E→R+

such that |p|E < 1. One says that E is perfectoid if the following holds true:
i) | · |E is nondiscrete;
ii) E is complete for | · |E;
iii) The Frobenius map

ϕ : OE/pOE → OE/pOE , ϕ(x) = xp

is surjective.

Example 1) Let K be a non archimedean field. The completion CK of its
algebraic closure is a perfectoid field.

2) Let K be a local field. Fix a uniformizer πK of K and set πn = π
1/pn

K . Then

the completion of the Kummer extension K[π
1/p∞

K ] =
∞

∪
n=1

K[πn] is a perfectoid field.

This follows from the congruence(
m

∑
i=0

[ai]π
m
n

)p

≡
m

∑
i=0

[ai]
p
π

m
n−1 (mod p).

3) Let Kn =Qp[ζpn ], where ζpn is a primitive root of unity, and K∞ = ∪
n⩾1

Kn. By

the same method, it is not difficult to show that the completion of K∞ is a perfectoid
field.

The following important result is a particilar case of [9, Proposition 6.6.6].

THEOREM 1.1 (Gabber–Ramero). Let K be a local field of characteristic 0. A
complete subfield K ⊂ E ⊂CK is a perfectoid field if and only if it is the completion
of a deeply ramified extension of K.

45
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2. Tilting

2.0.1. In this section, we describle the tilting construction, which functorially
associates to any perfectoid field of characteristic 0 a perfect field of characteristic
p. This construction first appeared in the pionnering paper of Fontaine [7].

2.0.2. Let E be a perfectoid field. Consider the projective limit

(23) OE♭ := lim←−
ϕ

OE/pOE = lim←−(OE/pOE
ϕ←− OE/pOE

ϕ←− ·· ·),

where ϕ(x) = xp is the absolute frobenius. It’s clear that OE♭ is equipped with a
natural ring structure. An element x of OE♭ is an infinite sequence x = (xn)n∈N of
elements xn ∈ OE/pOE such that xp

n+1 = xn. Below we summarize first properties
of the ring OE♭ :

1) If we choose, for all m ∈ N, a lift x̂m ∈ OE of xm, then for any fixed n the
sequence (x̂pm

n+m)m∈N converges to an element

x(n) = lim
m→∞

x̂pm

m+n ∈ OE

which does not depends on the choice of the lifts x̂m. In addition,
(
x(n)
)p

=

x(n−1) fol all n ⩾ 1.

PROOF. Since xp
m+n = xm+n−1, we have x̂p

m+n ≡ x̂m+n−1 (mod p), and an easy

induction shows that x̂pm

m+n≡ x̂pm−1

m+n−1 (mod pm). Therefore the sequence (x̂pm

n+m)m∈N
converges. Assume that x̃m ∈ OE are another lifts of xm, m ∈ N. Then x̃m ≡
x̂m (mod p) and therefore x̃pm

n+m ≡ x̂pm

n+m (mod pm+1). This implies that the limit
doesn’t depend on the choice of the lifts. □

2) For all x,y ∈ OE♭ one has

(24) (x+ y)(n) = lim
m→+∞

(
x(n+m)+ y(n+m)

)pm

, (xy)(n) = x(n)y(n).

PROOF. It’s easy to see that x(n) ∈OE is a lift of xn. Therefore x(n+m)+y(n+m) is
a lift of xn+m +yn+m, and the first formula follows from the definition of (x+y)(n).
The same argument proves the second formula. □

3) The map x 7→ (x(n))n⩾0 defines an isomorphism

(25) OE♭ ≃ lim←−
xp←x

OE ,

where the right hand side is equipped with the addition and multiplication
defined by (24).

PROOF. This follows from from 2). □

Define
| · |E♭ : OE♭ → R∪{+∞},

|x |E♭ = |x(0)|E .
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Exercise 10. Let y = (y0,y1, . . .) ∈ OE♭ . Show that

(26) yn = 0 ⇔ |y|E♭ ⩽ |p|p
n

E .

PROPOSITION 2.1. i) | · |E♭ is a non archimedean absolute value on OE♭ .
ii) OE♭ is a perfect complete valuation ring of characteristic p with maximal

ideal mE♭ = {x ∈ OE♭ | vE♭(x)> 0} and residue field kE .

iii) Let E♭ denote the field of fractions of OE♭ . Then |E♭|E♭ = |E|E .

PROOF. i) Let x,y ∈ OE♭ . It’s clear that

|xy|E♭ = |(xy)(0)|E = |x(0)y(0)|E = |x(0)| · |y(0)|E = |x|E♭ |y|E♭ .

Also,

|x+ y|E♭ = |(x+ y)(0)|E = | lim
m→+∞

(x(m)+ y(m))pm |E = lim
m→+∞

|x(m)+ y(m)|p
m

E

⩽ lim
m→+∞

max{|x(m)|E , |x(m)|E}pm
= lim

m→+∞
max

{∣∣(x(m))pm∣∣
E ,
∣∣(x(m))pm∣∣

E

}
= max

{∣∣(x(0))∣∣E , ∣∣(x(0))∣∣E}= max
{
|x|E♭ , |y|E♭

}
.

This proves that | · |E♭ is an non archimedean absolute value.
ii) We prove the completeness of OE♭ . Let (xn)n∈N be a Cauchy sequence in

OE♭ . Then for any M > 0 there exist N such that for all n,m ⩾ N

|xn− xm|E♭ ⩽ |p|p
M

E .

Writing xn = (xn,0,xn,1, . . .),xm = (xm,0,xm,1, . . .) and using (26), we obtain that for
all n,m ⩾ N

xn,i = xm,i for all 0 ⩽ i ⩽ M.
This shows that for each i ⩾ 0 the sequence (xn,i)n∈N is stationary. Set ai =
limn→+∞ xn,i. Then a = (a0,a1, . . .) ∈OE♭ , and it’s easy to check that limn→+∞ xn =
a.

We prove the perfectness of OE♭ . Set A := lim←−xp←x
OE . Then we have a com-

mutative diagram

(27) OE♭
∼ //

ϕ

��

A

ψ

��
OE♭

∼ // A,

where the horizontal maps are the isomorphisms (25), and the map ψ is given by

ψ(a0,a1,a2, . . .) = (ap
0 ,a

p
1 ,a

p
2 , . . .).

It’s clear that ker(ψ) = {0}, and therefore ψ is injective. From the formula

ψ(a1,a2,a3, . . .) = ψ(a0,a1,a2, . . .)

it follows that ψ is surjective. Therefore ϕ is an isomorphism.
The proof of the other assertions is left as an exercise.

□

Exercise 11. Complete the proof of Proposition 2.1.
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DEFINITION. The field E♭ will be called the tilt of E.

PROPOSITION 2.2. A perfectoid field E is algebraically closed if and only if
E♭ is.

PROOF. The proposition can be proved by successive approximation. See [6,
Proposition 2.1.11] for the proof that E♭ is algebraically closed and [6, Proposi-
tion 2.2.19, Corollary 3.1.10] for two different proofs of the converse statement.
Scholze’s original proof can be found in [12, Proposition 3.8]. See also Kedlaya’s
proof in [2]. □

3. Witt vectors

3.1. In this section, we review the theory of Witt vectors. Consider the se-
quence of polynomials w0(x0),w1(x0,x1), . . . defined by

w0(x0) = x0,

w1(x0,x1) = xp
0 + px1,

w2(x0,x1,x2) = xp2

0 + pxp
1 + p2x2,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

wn(x0,x1, . . .xn) = xpn

0 + pxpn−1

1 + p2xpn−2

2 + · · ·+ pnxn,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
PROPOSITION 3.2. Let F(x,y) ∈ Z[x,y] be a polynomial with coefficients in Z

such that F(0,0) = 0. Then there exists a unique sequence of polynomials

Φ0(x0,y0) ∈ Z[x0,y0],

Φ1(x0,y0,x1,y1) ∈ Z[x0,y0,x1,y1],

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Φn(x0,y0,x1,y1, . . . ,xn,yn) ∈ Z[x0,y0,x1,y1, . . . ,xn,yn],

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
such that
(28)
wn(Φ0,Φ1, . . . ,Φn) = F(wn(x0,x1, . . . ,xn),wn(y0,y1, . . . ,yn)), for all n ⩾ 0.

To prove this proposition, we need the following elementary lemma.

LEMMA 3.3. Let f ∈ Z[x0, . . . ,xn]. Then

f pm
(x0, . . . ,xn)≡ f pm−1

(xp
0 , . . . ,x

p
n) (mod pm), for all m ⩾ 1.

PROOF. The proof is left to the reader. □

PROOF OF PROPOSITION 3.2. The proposition could be easily proved by in-
duction on n. For n= 0 we have Φ0(x0,y0)=F(x0,y0). Assume that Φ0,Φ1, . . . ,Φn−1
are constructed. From (28) it follows that
(29)

Φn =
1
pn

(
F(wn(x0,x1, . . . ,xn),wn(y0,y1, . . . ,yn))− (Φpn

0 + · · ·+ pn−1
Φ

p
n−1)

)
.
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This proves the uniqueness. It remains to prove that Φn has coefficients in Z. Since

wn(x0, . . . ,xn−1,xn)≡ wn−1(x
p
0 , . . . ,x

p
n−1) (mod pn),

we have:

(30) F(wn(x0, . . . ,xn−1,xn),wn(y0, . . . ,yn−1,yn))

≡ F(wn−1(x
p
0 , . . . ,x

p
n−1),wn−1(y

p
0 , . . . ,y

p
n−1)) (mod pn).

On the other hand, applying Lemma 3.3 and the induction hypothesis we have

(31) Φ
pn

0 + · · ·+ pn−1
Φ

p
n−1 ≡ wn−1

(
Φ0(x

p
0 ,y

p
0), . . . ,Φn−1(x

p
0 ,y

p
0 , . . . ,x

p
n−1,y

p
n−1)

)
≡ F(wn−1(x

p
0 , . . . ,x

p
n−1),wn−1(y

p
0 , . . . ,y

p
n−1)) (mod pn).

From (30) and (31) we obtain that

F(wn(x0, . . . ,xn−1,xn),wn(y0, . . . ,yn−1,yn))≡Φ
pn

0 + · · ·+ pn−1
Φ

p
n−1 (mod pn).

Together with (29), this shows that Φn has coeffiients in Z. The proposition is
proved. □
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[13] J.-P. Serre, Corps locaux, Hermann, Paris, 1968.
[14] J. Tate p-divisible groups, Proc. Conf. Local Fields, Driebergen, 1967, pp. 158-183.

51

http://www-personal.umich.edu/~bhattb/teaching/mat679w17/lectures.pdf
http://www-personal.umich.edu/~bhattb/teaching/mat679w17/lectures.pdf

	Chapter 1. Preliminaries
	1. Non-archimedean fields
	2. Local fields
	3. The different
	4. Ramification filtration
	5. Galois groups of local fields
	6. Ramification in Zp-extensions

	Chapter 2. Almost étale extensions
	1. Norms and traces
	2. Deeply ramified extensions
	3. Almost étale extensions
	4. The normalized trace

	Chapter 3. Perfectoid fields
	1. Perfectoid fields
	2. Tilting
	3. Witt vectors

	Bibliography

