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Exercise 1. Let K be the splitting field of the polynomial f(X) = Xp − p ∈ Qp[X] (i.e.
K is generated over Qp by the roots of f(X)). Set G = Gal(K/Qp).

1) Show that K = Qp[α, ζp] where α is a root of f(X) and ζp is a primitive pth root
of unity.

Solution. The roots of f(X) are of the form αζ ip (0 ⩽ i ⩽ p− 1), where α is a fixed root
and ζ is a fixed primitive pth root of unity. Therefore the field generated by the roots is
Qp[α, ζp].

2) Show that [K : Qp] = p(p − 1) and that H = Gal(K/Qp[ζp]) is a normal subgroup of
G = Gal(K/Qp) of index (p− 1).

Solution. Since K contains the intermediate subfield Qp[ζp], the degree [Qp[ζp] : Qp] =
p − 1 divides [K : Qp]. Also, K contains the subfield Qp[α]. Since f(X) is an Eisenstein
polynomial, it is irreducible and [Qp[α] : Qp] = p. Therefore p divides [K : Qp]. Since p
and p− 1 are coprime, p(p− 1) divides [K : Qp]. On the other hand,

[K : Qp] = [K : Qp[ζp]] · [Qp[ζp] : Qp] ⩽ p(p− 1).

Hence [K : Qp] = p(p− 1).
Since Qp[ζp]/Qp is a Galois subextension of K/Qp, the group H = Gal(K/Qp[ζp]) is

normal in G and G/H is isomorphic to Gal(Qp[ζp]/Qp).

3) Show that K/Qp is a totally ramified extension and give an uniformizer of K.

Solution. For any extension A/B of local fields, let e(A/B) denote its ramification
index. Then

e(K/Qp) = e(K/Qp[ζp]) · e(Qp[ζp]/Qp) = e(K/Qp[α]) · e(Qp[α]/Qp).

Since Qp[α]/Qp and Qp[ζp]/Qp are totally ramified, we obtain that both p−1 and p divide
e(K/Qp). Therefore e(K/Qp) = p(p− 1) = [K : Qp], and K/Qp is totally ramified.
Let vK denote the normalized discrete valuation on K, i.e. such that vK(p) = e(K/Qp).

Since π0 = ζp − 1 is a uniformizer of Qp[ζp], and Qp[ζp]/Qp is totally ramified of de-
gree p − 1, we have vK(π0) = vK(p)/(p − 1) = p. The same argument shows that
vK(α) = vK(p)/p = p − 1. Set π := π0/α. Then vK(π) = vK(π0) − vK(α) = 1. Therefore
π is a uniformizer of K.

4) Describe the ramification subgroups Gi of G. Let g ∈ Gal(K/Qp). Then g(ζp) = ζ
ag
p

and g(α) = αζ
bg
p for some ag ∈ (Z/pZ)∗ and bg ∈ Z/pZ. Then g(π0) = (1 + π0)

ag − 1 and

g(π)− π =
g(π0

αζ
bg
p

− π0

α
=

(1 + π0)
ag − 1− π0ζ

bg
p

αζ
bg
p

=
(1 + π0)

ag − 1− π0(1 + π0)
bg

αζ
bg
p

.

Here vK(αζ
bg
p ) = vK(α) = p− 1. For the numerator, we have

(1 + π0)
ag − 1− π0(1 + π0)

bg ≡ agπ0 − π0 = (ag − 1)π0 (mod π2
0).
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Therefore the valuation of the numerator is vK(π0) = p if ag ̸= 1 i.e. if g /∈ H. This gives:

vK(g(π)− π) = 1 ⇔ g /∈ H.

Assume that g ∈ H \ {1}. Then ag = 1, bg ̸= 0 and

(1 + π0)
ag − 1− π0(1 + π0)

bg = π0 − π0(1 + π0)
bg ≡ bgπ

2
0 (mod π3

0).

Therefore the valuation of the numerator is vK(π
2
0) = 2p, and we obtain that

vK(g(π)− π) = p+ 1 ⇔ g ∈ H \ {1}.
These computations give:

G0 = G, G1 = G2 = . . . = Gp = H, Gp+1 = {1}.

Exercise 2. Fix a finite extension K of Qp. Let C denote the completion of the al-
gebraic closure of K. Fix a deeply ramified extension L of K and set H = Gal(K/L).

Part I.
Let V be a finite-dimensional vector space over C. We say that an action of H on V is
semi-linear, if it satisfies the following properties:

h(v1 + v2) = h(v1) + h(v2), h ∈ H, v1, v2 ∈ V,

h(αv) = h(α)h(v), h ∈ H, α ∈ C, v ∈ V,

where H acts naturally on C.

Choose a basis (v1, . . . , vn) of V, and denote by A(h) ∈ GLn(C) the unique matrix such
that

(h(v1), h(v2), . . . , h(vn)) = (v1, v2, . . . , vn)A(h).

(A(h) can be seen as the matrix of h in the basis (v1, . . . , vn), but the action of h is not
more linear.) The group H acts on the elements of GLn(C) coordinatewisely.

1) Show that A(h1h2) = A(h1)(h1A(h2)) for all h1, h2 ∈ H.

Solution. We have

(h1h2(v1), h1h2(v2), . . . , h1h2(vn)) = h1((h2(v1), h2(v2), . . . , h2(vn))

= h1

(
(v1, v2, . . . , vn)A(h2)

)
= (h1(v1), h1(v2), . . . , h1(vn))(h1A(h2))

= (v1, v2, . . . , vn)A(h1)(h1A(h2)).

On the other hand, (h1h2(v1), h1h2(v2), . . . , h1h2(vn)) = (v1, v2, . . . , vn)A(h1h2). Therefore
A(h1h2) = A(h1)(h1A(h2)).

2) Show that the following conditions are equivalent :
a) V has a basis formed by H-invariant vectors (i.e. stable under the action of H).
b) There exists B ∈ GLn(C) such that

A(h) = Bh(B)−1, ∀h ∈ H.

Solution. For any basis {wi}ni=1 of V , we denote by B ∈ GLn(C) the transition matrix
i.e.

(w1, . . . , wn) = (v1, . . . , vn)B.

The basis {wi}ni=1 is H-invariant if and only if

(h(w1), . . . , h(wn)) = (w1, . . . , wn), ∀h ∈ H.
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This condition means that

(h(v1), . . . , h(vn))h(B) = (v1, . . . , vn)B,

or equivalently that

A(h)h(B) = B, ∀h ∈ H.

Part II.
Recall thatC is equipped with the canonical topology provided by the absolute value. This
topology induces a topology on GLn(C). We say that a continuous map f : H → GLn(C)
is a cocycle if it satisfies the condition

f(h1h2) = f(h1)(h1f(h2)), h1, h2 ∈ H.

In particular, the map h 7→ A(h) from question 1) is a cocycle.

3) Show that there exists a normal subgroup H ′ of H of finite index such that

f(H ′) ⊂ 1 + p2Mn(OC),

where Mn(OC) is the set of all square matrices of order n. (Hint : in a Galois group, open
subgroups are of finite index.)

Solution. From the cocycle condition, it’s easy to see that f(e) = In (write f(e) =
f(ee) = f(e)(ef(e)) = f(e)f(e) and use the fact that f(e) is an invertible matrix). Let
U be any open subgroup of GLn(C) containing 1 + p2Mn(OC). (For example, one can
take 1 + p2Mn(mC), where mC is the maximal ideal of OC because mC is open in C.)
Since the inverse image of an open subset under the continuous map f is open and open
subgroups of H are of finite index and form a neighborhood base at 1, there exists a

subgroup of finite index S ⊂ H such that f(S) ⊂ 1+p2Mn(OC). Write H =
m
∪
i=1

hiS. Then

H ′ :=
m
∩
i=1

hiSh
−1
i is a normal subgroup of finite index and such that f(H ′) ⊂ 1+p2Mn(OC).

4) Set F = K
H′

. Assume that a cocycle f satisfies the condition f(H ′) ⊂ 1+ pmMn(OC).

4a) Show that there exists a finite Galois extension E/F such that

f(N) ⊂ 1 + pm+2Mn(OC), N := Gal(K/E).

Show that there exists y ∈ OE such that∑
σ∈Gal(E/F )

σ(y) = p.

Solution. The existence of N can be proved by the same argument as in the proof of
3). The existence of y follows directly from Theorem 2.2, Chapter 2. Here we use the
assumption that L is deeply ramified.

For each σ ∈ Gal(E/F ) choose a lift σ̂ ∈ Gal(K/F ), and set

Bm :=
1

p

∑
σ∈Gal(E/F )

f(σ̂)σ̂(y).

4b) Show that Bm ∈ 1 + pm−1Mn(OC).

Solution. One has

Bm − 1 =
1

p

∑
σ∈Gal(E/F )

f(σ̂)σ̂(y)− 1

p

∑
σ∈Gal(E/F )

σ̂(y) =
1

p

∑
σ∈Gal(E/F )

(f(σ̂)− 1)σ̂(y).
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Since f(σ̂)− 1 ∈ pmMn(OC), this implies that Bm − 1 ∈ pm−1Mn(OC).

4c) Show that for any h ∈ H ′,

h(Bm) ≡ f(h)−1Bm (mod pm+1),

and therefore B−1
m f(h)h(Bm) ≡ 1 (mod pm+1).

Solution. We have

h(Bm) =
1

p

∑
σ∈Gal(E/F )

h(f(σ̂))hσ̂(y).

Since h(f(σ̂)) = f(h)−1f(hσ̂) (cocycle property), we have

h(Bm) =
1

p

∑
σ∈Gal(E/F )

f(h)−1f(hσ̂)hσ̂(y) = f(h)−1 · 1
p

∑
σ∈Gal(E/F )

f(hσ̂)hσ̂(y)

We want to compare 1
p

∑
σ∈Gal(E/F )

f(hσ̂)hσ̂(y) with Bm. In general, the multiplication by

h does not permute the elements of the set {σ̂ | σ ∈ Gal(E/F )}, but the set {hσ̂ | σ ∈
Gal(E/F )} is another family of lifts of the elements of Gal(E/F ) in Gal(K/F ). If τ1 and
τ2 ∈ Gal(K/F ) are two lifts of the same element σ ∈ Gal(E/F ), then τ1 = τ2s with
s ∈ Gal(K/E), and therefore

f(τ1) = f(τ2s) = f(τ2)(τ2f(s)).

But f(s) ∈ 1+pm+2Mn(OC) by the choice of E (question 4a)), and therefore f(τ1) ≡ f(τ2)
(mod pm+2Mn(OC)). This observation shows that

1

p

∑
σ∈Gal(E/F )

f(hσ̂)hσ̂(y) ≡ 1

p

∑
σ∈Gal(E/F )

f(σ̂)σ̂(y) = Bm (mod pm+1Mn(OC)).

Hence
h(Bm) ≡ f(h)−1Bm (mod pm+1Mn(OC)),

and we are done.

5) By successive approximation, show that for any cocycle f : H → GLn(C) there
exists a normal subgroup of finite index H ′ and a matrix B ∈ GLn(OC) such that

f(h) = Bh(B)−1, ∀h ∈ H ′.

Solution. We proceed by successive approximation. Assume that

f(h) ≡ Bmh(Bm)
−1 (mod pm+1), ∀h ∈ H ′.

Set α(h) = B−1
m f(h)h(Bm). A direct computation shows that α is a cocycle. Since α(h) ≡

1 (mod pm+1), by question 4), there exists a matrix Cm ≡ 1 (mod pm) such that α(h) ≡
Cmh(Cm)

−1 (mod pm+2). Set Bm+1 = BmCm. Then

f(h) ≡ Bm+1h(Bm+1)
−1 (mod pm+2), ∀h ∈ H ′.

It’s easy to check that the sequence of matrices (Bm)m converges to some matrix B. Then
f(h) = Bh(B)−1.

Part III.
In this part, we apply the results of Part II to the study of semi-linear action of H. We
use the notations and conventions of Part I. Let V be a finite-dimensional C-vector space
equipped with a semi-linear action of H.

6) Show that there exists a basis (w1, . . . , wn) of V invariant under the action of a normal
subgroup of finite index H ′.
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Solution. This follows immediately from questions 2) and 5).

7) For any h ∈ H, write (h(w1), . . . , h(wn)) = (w1, . . . , wn)C(h). Show that C(h) ∈
GLn(F̂ ), where F̂ is the completion of the field F = K

H′

.

Solution. Let s ∈ H ′. Then for any h ∈ H we have sh = hs′ for some s′ ∈ H ′.
Hence

(sh(w1), . . . , sh(wn)) = (hs′(w1), . . . , hs
′(wn)) = (h(w1), . . . , h(wn)) = (w1, . . . , wn)C(h),

and
(sh(w1), . . . , sh(wn)) = s(w1, . . . , wn)s(C(h)) = (w1, . . . , wn)s(C(h)).

Therefore s(C(h)) = C(h) for all s ∈ H ′, and the coefficients of C(h) belong to the field

CH′
= F̂ by Theorem 3.3, Chapter III.

8) Let G be a finite group of automorphisms of a field E. Hilbert’s theorem 90 asserts
that any finite-dimensional E-vector space equipped with a semi-linear action of G, has
a G-invariant basis. Using this result, show that V has a H-invariant basis.

Solution. The finite group G := H/H ′ acts on F̂ and F̂H = L̂. Therefore F̂ /L̂ is a

Galois extension with the Galois group G. Let W denote the F̂ -vector space generated by
(w1, . . . , wn). By 7) the group G acts semi-linearly on W. Applying Hilbert’s theorem 90
to W , we obtain that W has a G-invariant basis. Therefore V has a H-invariant basis.


