UNIVERSITÉ DE BORDEAUX

Théorie de Galois et représentations des groupes finis

Examen, le 19 décembre 2023

Durée 3h. Documents non autorisés

Exercice 1. Le théorème de d'Alembert-Gauss. Le but de cet exercice est de prouver que tout polynôme de degré ≥ 1 à coefficients complexes possède une racine dans \mathbf{C} (et, par conséquent, se décompose en produit de facteurs de degré 1 sur \mathbf{C}).

1a) Soit K une extension de degré 2 de \mathbf{R} . Prouver que -1 est un carré dans K et en déduire que K est isomorphe à \mathbf{C} .

Solution. Il existe $\alpha \in K$ tel que $K = \mathbf{R}[\alpha]$. Comme $[K : \mathbf{R}] = 2$, il existe un polynôme irréductible $f(X) = X^2 + ax + b \in \mathbf{R}[X]$ de degré 2 tel que $f(\alpha) = 0$. Donc

$$\alpha = \frac{-a + \delta}{2},$$

où $\delta^2=a^2-4c$. Ici $a^2-4c<0$, sinon $\delta\in\mathbf{R}$ et $\alpha\in\mathbf{R}$. En écrivant

$$-1 = \frac{\delta^2}{4c - a^2}, \qquad 4c - a^2 \geqslant 0,$$

on voit que $-1=\beta^2,\;\beta=\delta/\sqrt{4c-a^2}\in K.$ Donc, $K=\mathbf{R}[\beta],$ où $\beta^2+1=0.$ On en déduit que

$$K \simeq \mathbf{R}[X]/(X^2+1) \simeq \mathbf{C}.$$

1b) Prouver que tout nombre complexe est un carré dans ${\bf C}$ et en déduire que ${\bf C}$ n'a pas d'extensions finies de degré 2.

Solution. Soit $z \in \mathbf{C}$. On écrit z sous une forme exponentielle $z = r \exp(i\theta)$, r = |z|. Alors $\sqrt{r} \exp(i\theta/2) \in \mathbf{C}$ est une racine carré de z. On en déduit que tout polyôme complexe de degré 2 admet une racine dans \mathbf{C} . Les mêmes arguments que ceux utilisés dans la question 1), montrent que \mathbf{C} n'a pas d'extensions de degré 2.

Soit $f(X) \in \mathbf{R}[X]$ un polynôme irréductible sur \mathbf{R} de degré $d \geq 2$. Soit L/\mathbf{R} un corps de décomposition de f(X). On note n le degré de L/\mathbf{R} et l'on pose $G = \mathrm{Gal}(L/\mathbf{R})$. Avertissement: on ne peut supposer ni que d=2 ni que L est contenu dans \mathbf{C} car ce sont des conséquences du théorème de d'Alembert-Gauss.

2) Montrer que d et n sont des nombres pairs.

Solution. On montre par l'absurde que d est pair. Supposons que d est impair et que f(X) est unitaire. Alors $\lim_{x\to-\infty} f(X) = -\infty$ et $\lim_{x\to+\infty} f(X) = +\infty$. Par le théorème des valeurs intermédiaires, f(X) admet une racine dans \mathbf{R} , ceux qui contredit son irréductibilité. Donc d est pair. Par le théorème de la base télescopique, d divise $n = [L : \mathbf{R}]$.

3) Posons $n=2^mk$, où k est un nombre impair. En utilisant les théorèmes de Sylow prouver qu'il existe une sous-extension $\mathbf{R} \subset F \subset L$ telle que $[F:\mathbf{R}]=k$. Montrer ensuite que k=1 et, par conséquent, $n=2^m$.

Solution. Par le premier théorème de Sylow, $G = \operatorname{Gal}(L/\mathbf{R})$ admet un sous-groupe H d'ordre 2^m . Soit $F = L^H$. Par la correspondance de Galois, $[L:F] = 2^m$ et $[F:\mathbf{R}] = k$. Par le théorème de l'élément primitif, $F = \mathbf{R}[\alpha]$, où α est une racine d'un polynôme irréductible de degré k. Il découle maintenant de la question 2) que k = 1. Donc $n = 2^m$.

4) Montrer qu'un 2-groupe distinct de $\{e\}$ admet un sous-groupe **distingué** d'ordre 2.

Solution. Soit \mathcal{G} un 2-groupe distinct de $\{e\}$. Alors le centre Z de \mathcal{G} est un sous-groupe non-trivial de \mathcal{G} . Soit $z \in Z$ un élément d'ordre 2^a , $a \ge 1$. Alors $g = z^{a-1}$ est un élément d'ordre 2 qui commute avec tous les éléments de \mathcal{G} . Donc $\langle g \rangle = \{e, g\}$ est un sous-groupe distingué d'ordre 2.

5) Prouver qu'il existe une chaîne d'extensions

$$\mathbf{R} = L_0 \subset L_1 \subset L_2 \subset \cdots \subset L_m = L$$

telle que $[L_{i+1}:L_i]=2$ pour tout $i=0,1,\ldots,m-1$.

Solution. On sait déjà que $|G| = 2^m$. Par la question précédente, G admet un sous groupe distingué H d'ordre 2. Soit $L_{m-1} = L^H$. Alors $[L:L_{m-1}] = 2$ et L_{m-1}/\mathbf{R} est une extension galoisienne de degré 2^{m-1} .

Donc $Gal(L_{m-1}/\mathbf{R})$ est d'ordre 2^{m-1} et en appliquant le même argument, on montre par récurrence qu'il existe une chaîne d'extensions

$$\mathbf{R} = L_0 \subset L_1 \subset L_2 \subset \cdots \subset L_m = L$$

telle que $[L_{i+1}:L_i]=2$ pour tout $i=0,1,\ldots,m-1$.

6) En déduire que m=1, puis prouver le théorème de d'Alembert-Gauss.

Solution. Par la question 1a), $[L_1 : \mathbf{R}] = 2$ et $L_1 \simeq \mathbf{C}$. Par la question 1b), L_1 n'a pas d'extensions de degré 2, d'où m = 1. On a montré que $L = \mathbf{C}$.

Soit M une extension finie de \mathbf{C} . Comme $[\mathbf{C}:\mathbf{R}]=2$, l'extension M/\mathbf{R} est finie. Par le théorème de l'élément primitif, $M=\mathbf{R}[\alpha]$, où α est une racine d'un polynôme irréductible f(X) sur \mathbf{R} . Par l'étude précédente, le corps de décomposition L de f(X) coïncide avec \mathbf{C} . Donc $M=\mathbf{C}$. On en déduit que chaque polynôme irréductible à coefficients dans \mathbf{R} admet une racine dans \mathbf{C} .

Exercice 2. Représentations des groupes d'ordre p^3 .

Première partie. Soit p un nombre premier et soit G un groupe non-abélien d'ordre p^3 .

1) Montrer que le centre Z(G) est un sous-groupe d'ordre p et que le quotient G/Z(G) est abélien.

Solution. Comme G est un p-groupe, Z(G) est un sous-groupe nontrivial de G. On remarque que $|Z(G)| = p^3$ implique Z(G) = G ce qui est impossible car G est non-abélien. Supposons que $|Z(G)| = p^2$. Soit $g \in G \setminus Z(G)$. Alors le sous-groupe $\langle g, Z(G) \rangle$ engendré par Z(G) et g est strictement plus grand que Z(G), d'où on tire que $\langle g, Z(G) \rangle = G$. Comme g commute avec les éléments de Z(G), on en déduit que G est abélien et Z(G) = G. Cette contradiction montre que $|Z(G)| \neq p^2$. Donc |Z(G)| = p. Le quotient G/Z(G) est un groupe d'ordre p^2 . Il est bien connu que tout groupe d'ordre p^2 (p premier) est abélien.

2) Montrer que $[x,y] \in Z(G)$ pour tous $x,y \in G$. En déduire que [G,G]=Z(G).

Solution. On sait que si un groupe quotient G/H est abélien, alors

 $[G,G] \subset H$. Par la question 1), G/Z(G) est abélien, d'où $[G,G] \subset Z(G)$. D'autre part, $[G,G] \neq \{e\}$. Comme |Z(G)| = p (p premier), on en déduit que [G,G] = Z(G).

3) Montrer que G a exactement p^2 représentations complexes de degré 1 (à isomorphisme près).

Solution. Les représentations complexes de degré 1 (à isomorphisme près) sont en bijection avec le groupe $\text{Hom}(G/[G,G], \mathbb{C}^*)$ d'ordre

$$|G/[G,G]| = |G/Z(G)| = p^2.$$

4) Montrer que G a exactement p-1 représentations complexes irréductibles de degré > 1 (à isomorphisme près) et que ces représentations sont toutes de degré p. Indication : vous pouvez utiliser le fait (démontré en TD) que le degré d'une représentation irréductible divise l'ordre du groupe.

Solution. D'après un théorème de cours,

$$\sum_{\chi \in \operatorname{Irr}(G} n_{\chi}^2 = p^3,$$

où n_χ est le degré des représentations irréductibles associées à un caractère χ . Comme n_χ divise p^3 , on voit que $n_\chi \neq p^2, p^3$. Donc

(nombre de représentations de degré 1)+

$$p^2$$
 (nombre de représentations de degré p) = p^3 .

Comme G a exactement p^2 représentations de degré 1, on en déduit que

 p^2 (nombre de représentations de degré p) = $p^3 - p^2$,

d'où l'assertion voulue.

Deuxième partie. On pose $\mathbf{F}_p = \mathbf{Z}/p\mathbf{Z}$ et on considère le groupe multiplicatif matriciel

$$H = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \middle| a, b, c \in \mathbf{F}_p \right\}.$$

On note V l'espace vectoriel $C(\mathbf{F}_p, \mathbf{C})$ des fonctions $f : \mathbf{F}_p \to \mathbf{C}$. Rappelons que cet espace est muni de la base canonique $\{f_m\}_{m \in \mathbf{F}_p}$:

$$f_m(x) = \begin{cases} 1, & \text{si } x = m, \\ 0, & \text{sinon.} \end{cases}$$

Soit $\zeta \neq 1$ une racine complexe de l'unité d'ordre p. On considère l'application

$$\rho_{\sigma}^{(\zeta)} : H \to GL(V),$$

$$\rho_{\sigma}^{(\zeta)}(f)(x) := \zeta^{cx-b} f(x-a), \qquad \sigma = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}.$$

5) Montrer que $\rho^{(\zeta)}$ est un morphisme de groupes.

Solution. Soient

$$\sigma_1 = \begin{pmatrix} 1 & a_1 & b_1 \\ 0 & 1 & c_1 \\ 0 & 0 & 1 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 1 & a_2 & b_2 \\ 0 & 1 & c_2 \\ 0 & 0 & 1 \end{pmatrix}.$$

Alors

$$\sigma_1 \sigma_2 = \begin{pmatrix} 1 & a_1 + a_2 & b_1 + b_2 + a_1 c_2 \\ 0 & 1 & c_1 + c_2 \\ 0 & 0 & 1 \end{pmatrix},$$

et

$$\rho_{\sigma_1\sigma_2}^{(\zeta)}(f)(x) = \zeta^{(c_1+c_2)x - (b_1+b_2+a_1c_2)} f(x - (a_1 + a_2)).$$

D'autre part,

$$\rho_{\sigma_1}^{(\zeta)} \circ \rho_{\sigma_2}^{(\zeta)}(f)(x) = \rho_{\sigma_1}^{(\zeta)}(\zeta^{c_2x-b_2}f(x-a_2)) =
= \zeta^{c_1x-b_1}\zeta^{c_2(x-a_1)-b_2}f(x-a_1-a_2) = \zeta^{(c_1+c_2)x-(b_1+b_2+a_1c_2)}f(x-(a_1+a_2)).$$
Donc $\rho_{\sigma_1\sigma_2}^{(\zeta)}(f) = \rho_{\sigma_1}^{(\zeta)} \circ \rho_{\sigma_2}^{(\zeta)}(f).$

6) Expliciter l'action de $\rho_{\sigma}^{(\zeta)}$ sur la base $\{f_m\}_{m\in \mathbf{F}_p}$.

Solution. On a

$$\rho_{\sigma}^{(\zeta)}(f_m)(x) = \zeta^{cx-b} f_m(x-a) = \begin{cases} \zeta^{c(a+m)-b}, & \text{si } x = a+m, \\ 0, & \text{sinon.} \end{cases}$$

Donc
$$\rho_{\sigma}^{(\zeta)}(f_m) = \zeta^{c(a+m)-b} f_{a+m}$$
.

7) On note χ_{ζ} le caractère de la représentation $\rho^{(\zeta)}$. Montrer que

$$\chi_{\zeta}(\sigma) = \begin{cases} p\zeta^{-b}, & \text{si } a = c = 0, \\ 0, & \text{sinon.} \end{cases}$$

Indication : calculer d'abord $\sum_{x \in \mathbf{F}_p} \zeta^x$.

Solution. On a

$$\sum_{x \in \mathbf{F}_p} \zeta^x = \sum_{n=0}^{p-1} \zeta^n = \frac{\zeta^p - 1}{\zeta - 1} = 0.$$

Si a=c=0, on a $\rho_{\sigma}^{(\zeta)}(f_m)=\zeta^{-b}f_m$. Donc la matrice de $\rho_{\sigma}^{(\zeta)}$ dans la base $\{f_m\}_{m\in \mathbf{F}_p}$ est $\zeta^{-b}I_p$, où I_p désigne la matrice identité. Donc $\chi_{\zeta}(\sigma)=p\zeta^{-b}$. Si $a\neq 0$, la diagonale de la matrice de $\rho_{\sigma}^{(\zeta)}$ dans la base $\{f_m\}_{m\in \mathbf{F}_p}$ est nulle et $\chi_{\zeta}(\sigma)=0$. Si a=0 et $c\neq 0$, alors $\rho_{\sigma}^{(\zeta)}(f_m)=\zeta^{cm-b}f_m$ et

$$\chi_{\zeta}(\sigma) = \sum_{m \in \mathbf{F}_p} \zeta^{cm-b} = \zeta^{-b} \sum_{m \in \mathbf{F}_p} \zeta^{cm} = \zeta^{-b} \sum_{m \in \mathbf{F}_p} \zeta^m = 0$$

(la multiplication par $c \neq 0$ est une bijection de \mathbf{F}_p sur \mathbf{F}_p).

8) Montrer que $\rho^{(\zeta)}$ est irréductible.

Solution. On a

$$\langle \chi_{\zeta}, \chi_{\zeta} \rangle = \frac{1}{|H|} \sum_{\sigma \in H} \chi_{\zeta}(\sigma) \overline{\chi_{\zeta}(\sigma)} = \frac{1}{p^3} \sum_{b \in \mathbf{F}_p} p \zeta^{-b} \overline{p \zeta^{-b}} = \frac{1}{p^3} \sum_{b \in \mathbf{F}_p} p^2 = 1.$$

Donc $\rho^{(\zeta)}$ est irréductible.

9) Donner la liste des représentations irréductibles de degré > 1 de H à isomorphisme près.

Solution. Les formules de la question 7) montrent que les caractères χ_{ζ} où $\zeta \neq 1$ parcourt p-1 racines primitives de l'unité d'ordre p, sont deux à deux distincts. Donc les représentations $\rho^{(\zeta)}$ sont deux à deux non isomorphes. Comme le nombre de représentations irréductibles de H de degré p est égal à p-1 (cf. question 4), on en déduit que $\rho^{(\zeta)}$ donnent toutes les représentations irréductibles de H de degré > 1.

10) Question bonus. Décrire la structure du groupe H/[H, H] et donner la liste des représentations de degré 1 de H (à isomorphisme près).

Solution. Un calcul direct montre que

$$[\sigma_1, \sigma_2] := \sigma_1 \sigma_2 \sigma_1^{-1} \sigma_2^{-1} = \begin{pmatrix} 1 & 0 & a_1 c_2 - a_2 c_1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

On en déduit que

$$[H, H] = \left\{ \begin{pmatrix} 1 & 0 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \middle| x \in \mathbf{F}_p \right\}.$$

Pour toute matrice $\sigma \in H$, la matrice σ^p est de la forme

$$\sigma^p = \begin{pmatrix} 1 & 0 & \star \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in [H, H].$$

Comme le groupe H/[H,H] est abélien d'ordre p^2 on en déduit que $H/[H,H] \simeq \mathbf{Z}/p\mathbf{Z} \oplus \mathbf{Z}/p\mathbf{Z}$ et les classes

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot [H, H], \qquad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \cdot [H, H]$$

sont des générateurs de H/[H,H]. Les représentations de degré 1 de H/[H,H] sont les caractères de H/[H,H]. Chaque caractère $\psi:H/[H,H]\to \mathbb{C}^*$ est complètement défini par les valeurs $\psi(A)$ et $\psi(B)$ qui parcourent les racines complexes de l'unité d'ordre p.

FIN