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Abstract. This paper is devoted to the study of the nonlinear Schrödinger-Poisson system
with a doping pro�le. We are interested in the existence of stable standing waves by considering
the associated L2-minimization problem. The presence of a doping pro�le causes a di�culty in
the proof of the strict sub-additivity. A key ingredient is to establish the strict sub-additivity
by adapting a scaling and an iteration argument, which is inspired by [32]. When the doping
pro�le is a characteristic function supported on a bounded smooth domain, smallness of some
geometric quantity related to the domain ensures the existence of stable standing waves.

1. Introduction

In this paper, we are concerned with the following nonlinear Schrödinger-Poisson system:{
−∆u+ ωu+ eφu = |u|p−1u

−∆φ = e
2

(
|u|2 − ρ(x)

) in R3, (1.1)

where ω ∈ R, e > 0 and 1 < p < 7
3 . Equation (1.1) appears as a stationary problem for the

time-dependent nonlinear Schrödinger-Poisson system:
iψt + ∆ψ − eφψ + |ψ|p−1ψ = 0 in R+ × R3,

−∆φ = e
2

(
|ψ|2 − ρ(x)

)
in R+ × R3,

ψ(0, x) = ψ0.

(1.2)

Indeed when we look for a standing wave of the form: ψ(t, x) = eiωtu(x), we are led to the

elliptic problem (1.1). In this paper, we are interested in the existence of stable standing waves

for (1.2) by considering the solvability of the associated L2-constraint minimization problem.

The Schrödinger-Poisson system appears in various �elds of physics, such as quantum me-

chanics, black holes in gravitation and plasma physics. Especially, the Schrödinger-Poisson

system plays an important role in the study of semi-conductor theory; see [21, 25, 27], and then

the function ρ(x) is referred as impurities or a doping pro�le. The doping pro�le comes from the

di�erence of the number densities of positively charged donor ions and negatively charged accep-

tor ions, and the most typical examples are characteristic functions, step functions or Gaussian

functions. Equation (1.1) also appears as a stationary problem for the Maxwell-Schrödinger

system. We refer to [6, 13, 14] for the physical background and the stability result of standing

waves for the Maxwell-Schrödinger system. In this case, the constant e describes the strength

of the interaction between a particle and an external electromagnetic �eld.

The nonlinear Schrödinger-Poisson system with ρ ≡ 0:{
−∆u+ ωu+ eφu = |u|p−1u

−∆φ = e
2 |u|

2
in R3 (1.3)
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has been studied widely in the last two decades. Especially, the existence of L2-constraint

minimizers depending on p and the size of the mass, the existence of ground state solutions

of (1.3) and their stability have been investigated in detail; see [2, 3, 4, 5, 10, 13, 19, 20, 22,

26, 28, 29, 31] and references therein. On the other hand, the nonlinear Schrödinger-Poisson

system with a doping pro�le is less studied. In [16, 17], the corresponding 1D problem has

been considered. Moreover, the linear Schrödinger-Poisson system (that is, the problem (1.1)

without |u|p−1u) with a doping pro�le in R3 has been studied in [7, 8]. As far as we known,

there is no literature concerning with (1.1) and the existence of stable standing waves, which

is exactly the motivation of this paper.

To state our main results, let us give some notation. For u ∈ H1(R3,C), the energy functional

associated with (1.1) is given by

I(u) = E(u) +
ω

2

∫
R3

|u|2 dx,

E(u) =
1

2

∫
R3

|∇u|2 dx− 1

p+ 1

∫
R3

|u|p+1 dx+ e2A(u). (1.4)

Here we denote the nonlocal term by S(u) = S1(u) + S2 with

S1(u)(x) := (−∆)−1

(
|u|2

2

)
=

1

8π|x|
∗ |u|2,

S2(x) := (−∆)−1

(
−ρ
2

)
= − 1

8π|x|
∗ ρ(x),

and the functional corresponding to the nonlocal term by

A(u) :=
1

4

∫
R3

S(u)
(
|u|2 − ρ(x)

)
dx =

1

32π

∫
R3

∫
R3

(
|u(x)|2 − ρ(x)

)(
|u(y)|2 − ρ(y)

)
|x− y|

dx dy.

For µ > 0, let us consider the minimization problem:

C(µ) = inf
u∈B(µ)

E(u), (1.5)

where B(µ) = {u ∈ H1(R3,C) ; ‖u‖2L2(R3) = µ}. We also de�ne the set of minimizers by

M(µ) := {u ∈ B(µ) ; E(u) = C(µ)}.

In this setting, the constant ω in (1.1) appears as a Lagrange multiplier.

Let us de�ne the energy associated with (1.3):

E∞(u) :=
1

2
‖∇u‖22 −

1

p+ 1

∫
R3

|u|p+1 dx+
e2

4

∫
R3

S1(u)|u|2 dx.

Indeed if we assume ρ(x)→ 0 as |x| → ∞, (1.3) can be seen as a problem at in�nity. We de�ne

the minimum energy associated with (1.3) by

ce,∞(µ) = c∞(µ) := inf
u∈B(µ)

E∞(u). (1.6)

The existence of minimizers for ce,∞(µ) has been studied widely and is summarized as follows.

(i) In the case 2 < p < 7
3 , ce,∞(µ) is attained if and only if ce,∞(µ) < 0. Moreover

ce,∞(µ) < 0 when µ is large for �xed e or e is small for �xed µ.

(ii) In the case p = 2, ce,∞(µ) is attained if and only if ce,∞(µ) < 0. Moreover ce,∞(µ) < 0

when e is small for �xed µ.

(iii) In the case 1 < p < 2, ce,∞(µ) < 0 for all µ and e. Moreover ce,∞(µ) is attained when

µ is small for �xed e or e is small for �xed µ.
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For the proof, we refer to [4, 5, 10, 13, 20, 22, 19, 29].

For the doping pro�le ρ, we assume that

ρ(x) ∈ L
6
5 (R3) ∩ Lqloc(R

3) for some q > 3 and x · ∇ρ(x) ∈ L
6
5 (R3). (1.7)

Our �rst main result is the following.

Theorem 1.1 (Existence of a minimizer). Under the assumption (1.7), we have the followings.

(i) Suppose that 2 < p < 7
3 and choose µ > 0 so that c∞(µ) < 0. Then there exists

ρ0 = ρ0(e, µ) > 0 such that if ‖ρ‖
L

6
5 (R3)

+ ‖x · ∇ρ‖
L

6
5 (R3)

≤ ρ0, the minimization

problem (1.5) admits a minimizer uµ.

Moreover the associated Lagrange multiplier ω = ω(µ) is positive.

(ii) Suppose that 1 < p ≤ 2. Then there exists e0 = e0(µ, ρ) > 0 such that if 0 < e ≤ e0, the

minimization problem (1.5) admits a minimizer uµ.

In the statement of (i), we may choose e > 0 so that c∞(µ) < 0 for �xed µ > 0. The

assumption (1.7) rules out the case ρ is a characteristic function supported on a bounded

smooth domain. Even in this case, we are still able to obtain the existence of minimizers under

a smallness condition on some geometric quantity related to the domain; See Section 6.

The positivity of the Lagrange multiplier ω(µ) will be useful to establish the relation between

L2-constraint minimizers and ground state solutions, which we leave for a future work. We also

refer to [15, 18] for this direction.

The next result states the orbital stability of standing waves corresponding to minimizers.

Theorem 1.2 (Orbital stability of standing wave). Under the assumption of Theorem 1.1, the

standing wave ψ(t, x) = eiωtuµ(x) is orbitally stable in the following sense: For every ε > 0,

there exists δ(ε) > 0 such that if an initial value ψ0 satis�es ‖ψ0 − uµ‖H1(R3) < δ, then the

corresponding solution ψ of (1.2) satis�es

sup
t>0

inf
u∈M(µ)

{∥∥ψ(t, ·)− u(·)
∥∥
H1(R3)

+
∥∥∥φ(t, ·)− e

2
(−∆)−1|u(·)|2

∥∥∥
D1,2(R3)

}
< ε.

Here D1,2(R3) = Ḣ(R3) denotes the completion of C∞0 (R3) with respect to the norm:

‖u‖2D1,2(R3) =
∫
R3 |∇u|2 dx. As for the global well-posedness of the Cauchy problem for (1.2),

see Section 4 below.

Here we brie�y explain our strategy and its di�culty. The existence of L2-constraint mini-

mizer can be shown by applying the concentration compactness principle. A key of the proof

is to establish the strict sub-additivity :

C(µ) < C
(
µ′
)

+ C
(
µ− µ′

)
for all 0 < µ′ < µ. (1.8)

In the case 2 < p < 7
3 and ρ ≡ 0, (1.8) can be readily obtained by adapting a suitable scaling.

However this scaling does not work straightforwardly if a doping pro�le is present, because of

the loss of spatial homogeneity. In order to overcome this di�culty, we perform an iteration

argument inspired by [32]. By imposing the smallness of ρ and x · ∇ρ, it is possible to prove

(1.8) if 2 < p < 7
3 . In the case 1 < p ≤ 2, we need to assume that, not ρ itself is small, but e

is su�ciently small. We refer to Remark 3.5 below why we have to distinguish into the cases

2 < p < 7
3 and 1 < p ≤ 2.

When ρ is a characteristic function, further consideration is required because ρ cannot be

weakly di�erentiable. In this case, a key of the proof is the sharp boundary trace inequality

which was developed in [1]. Then by imposing a smallness condition of some geometric quantity

related to the support of ρ, we are able to obtain the existence of stable standing waves.



4 M. COLIN AND T. WATANABE

This paper is organized as follows. In Section 2, we introduce several properties of the energy

functional and some lemmas which will be used in this paper. We establish the existence of a

minimizer and prove Theorem 1.1 in Section 3. Section 4 is devoted to the solvability of the

Cauchy problem, and the stability of standing waves will be investigated in Section 5. In Section

6, we consider the case ρ is a characteristic function and present the existence of standing waves

for this case. Finally in Section 7, we �nish this paper by providing a concluding remark and

one open question.

Hereafter in this paper, unless otherwise speci�ed, we write ‖u‖Lp(R3) = ‖u‖p.

2. Variational formulation and preliminaries

The aim of this section is to prepare several properties of the energy functional and present

intermediate lemmas which will be used later on.

2.1. Reduction to a single equation.
First we observe that the energy functional de�ned in (1.4) actually corresponds to the system

(1.1). Let us consider the functional of two variables, which is associated with (1.1):

J(u, φ) :=
1

2

∫
R3

{
|∇u|2 + ω|u|2 + eφ

(
|u|2 − ρ(x)

)
− |∇φ|2

}
dx− 1

p+ 1

∫
R3

|u|p+1 dx,

for (u, φ) ∈ H1(R3,C) ×D1,2(R3,R). A direct computation shows that the identity ∂J
∂u = 0 is

equivalent to the �rst equation of (1.1). Moreover one �nds that

∂J

∂φ
ψ =

∫
R3

{
−∇φ · ∇ψ +

e

2

(
|u|2 − ρ(x)

)
ψ
}
dx for all ψ ∈ C∞0 (R3,R),

from which we deduce that

−∆φ =
e

2

(
|u|2 − ρ(x)

)
. (2.1)

Since |u|2 − ρ ∈ L
6
5 (R3) = (L6(R3))∗, by arguing similarly as in [6], the Poisson equation (2.1)

has a unique solution:

φ = eS(u) =
e

2
(−∆)−1

(
|u|2 − ρ(x)

)
∈ D1,2(R3,R).

Moreover multiplying (2.1) by φ, we have∫
R3

|∇φ|2 dx =
e

2

∫
R3

φ
(
|u|2 − ρ(x)

)
dx.

This implies that

J(u, eS(u)) =
1

2

∫
R3

(|∇u|2 + ω|u|2) dx− 1

p+ 1

∫
R3

|u|p+1 dx+
e2

4

∫
R3

S(u)
(
|u|2 − ρ(x)

)
dx

= I(u).

2.2. Decomposition of the energy.
In this subsection, we rewrite the energy functional E in a more convenient way. First we

decompose E in the following way:

E(u) =
1

2

∫
R3

|∇u|2 dx− 1

p+ 1

∫
R3

|u|p+1 dx,

+
e2

4

∫
R3

S1(u)|u|2 dx+
e2

4

∫
R3

S2|u|2 dx−
e2

4

∫
R3

S1(u)ρ(x) dx− e2

4

∫
R3

S2ρ(x) dx
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and de�ne four nonlocal terms:

A1(u) =
1

4

∫
R3

S1(u)|u|2 dx,

A2(u) = −1

4

∫
R3

S1(u)ρ(x) dx,

A2′(u) =
1

4

∫
R3

S2|u|2 dx,

A0 = −1

4

∫
R3

S2ρ(x) dx.

Note that A0 is independent of u. One can also see that

A2(u) = − 1

32π

∫
R3

∫
R3

|u(y)|2ρ(x)

|x− y|
dx dy = A2′(u).

Then we are able to write E in the following form:

E(u) =
1

2

∫
R3

|∇u|2 dx− 1

p+ 1

∫
R3

|u|p+1 dx+ e2A1(u) + 2e2A2(u) + e2A0.

Recalling that

S1(u)(x) = (−∆)−1

(
|u|2

2

)
≥ 0,

we �nd that

A1(u) ≥ 0 for all u ∈ H1(R3,C). (2.2)

Now it is convenient to put

E(u) := E(u)− e2A0. (2.3)

Since A0 is independent of u, we have only to consider the minimization problem for E.

2.3. Estimates of nonlocal terms.
This subsection is devoted to present estimates for the nonlocal terms of the functional E.

For later use, let us de�ne

A3(u) =
1

2

∫
R3

S1(u)x · ∇ρ(x) dx

which is well-de�ned for u ∈ H1(R3,C), and a constant

A4 =
1

2

∫
R3

S2x · ∇ρ(x) dx.

Then we have the following.

Lemma 2.1. For any u ∈ H1(R3,C), S1, A1, A2 and A3 satisfy the estimates:

‖S1(u)‖6 ≤ C‖∇S1(u)‖2 ≤ C‖u‖212
5

≤ C‖u‖
3
2
2 ‖∇u‖

1
2
2 ,

0 ≤ A1(u) ≤ C‖S1(u)‖6‖u‖212
5

≤ C‖u‖32‖∇u‖2,

|A2(u)| ≤ 1

4
‖S1(u)‖6‖ρ‖ 6

5
≤ C‖ρ‖ 6

5
‖u‖212

5

≤ C‖ρ‖ 6
5
‖u‖

3
2
2 ‖∇u‖

1
2
2 ,

|A3(u)| ≤ 1

2
‖S1(u)‖6‖x · ∇ρ‖ 6

5
≤ C‖x · ∇ρ‖ 6

5
‖u‖

3
2
2 ‖∇u‖

1
2
2 .

Moreover S2, the constants A0 and A4 can be estimated as follows.

‖S2‖6 ≤ C‖∇S2‖2 ≤ C‖ρ‖ 6
5
,

|A0| ≤
1

4
‖S2‖6‖ρ‖ 6

5
≤ C‖ρ‖26

5

,

|A4| ≤
1

2
‖S2‖6 ‖x · ∇ρ‖ 6

5
≤ C‖ρ‖ 6

5
‖x · ∇ρ‖ 6

5
.
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For the proof of the inequality on S1(u), we refer to [26]. The other estimates can be obtained

by the Hödler inequality and the Sobolev inequality.

Lemma 2.2. Assume that un ⇀ u in H1(R3). Then it follows that

lim
n→∞

{A1(un − u)−A1(un) +A1(u)} = 0,

lim
n→∞

{A2(un − u)−A2(un) +A2(u)} = 0.

Moreover if un → u in L
12
5 (R3), we also have

lim
n→∞

A1(un) = A1(u) and lim
n→∞

A2(un) = A2(u).

Proof. The proof for A1 can be found in [31, Lemma 2.2]. Since ρ ∈ L
6
5 (R3) = (L6(R3))∗, the

property for A2 can be established in a similar way. �

2.4. Scaling properties.
In this subsection, we collect scaling properties of the nonlocal terms A1 and A2. For a,

b ∈ R and λ > 0, let us adapt the scaling uλ(x) := λau
(
λbx
)
. We �rst recall that

S1(u)(x) = (−∆)−1

(
|u(x)|2

2

)
=

1

8π

∫
R3

|u(y)|2

|x− y|
dy.

Putting y = λ−bz, we have

S1(uλ)(x) =
1

8π

∫
R3

|uλ(y)|2

|x− y|
dy =

λ2a

8π

∫
R3

|u(λby)|2

|x− y|
dy

=
λ2a+b

8π

∫
R3

|u(λby)|2

|λbx− λby|
dy

=
λ2a−2b

8π

∫
R3

|u(z)|2

|λbx− z|
dz.

Thus one �nds that

S1(uλ)(x) = λ2a−2bS1(u)(λbx),

A1 (uλ) = λ4a−5bA1(u), (2.4)

A2(uλ) = −1

4

∫
R3

S1(uλ)ρ(x) dx = −λ
2a−2b

4

∫
R3

S1(u)(λbx)ρ(x) dx

= −λ
2a−5b

4

∫
R3

S1(u)ρ
(
λ−bx

)
dx. (2.5)

By the Hölder inequality, it follows that

|A2(uλ)| ≤ λ2a−5b

4
‖S1(u)‖6‖ρ(λ−b·)‖ 6

5
≤ Cλ2a− 5

2
b‖ρ‖ 6

5
‖u‖

3
2
2 ‖∇u‖

1
2
2 . (2.6)

2.5. Nehari and Pohozaev identities.
This subsection is devoted to establish the Nehari identity and the Pohozaev identity asso-

ciated with (1.1). First we observe that

I ′(u)ϕ =

∫
R3

∇u · ∇ϕ̄ dx+ ω

∫
R3

uϕ̄ dx−
∫
|u|p−2uϕ̄ dx

+
e2

4

∫
R3

S′(u)ϕ
(
|u|2 − ρ(x)

)
dx+

e2

2

∫
R3

S(u)uϕ̄ dx,

for any ϕ ∈ H1(R3,C). The de�nition S(u) = S1(u) + S2 shows that S′(u) = S′1(u), and

moreover

S′1(u)ϕ = (−∆)−1 ∗ (uϕ̄).
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This yields that

S′(u)u = S′1(u)u = (−∆)−1 ∗ |u|2 = 2S1(u) = 2S(u)− 2S2

and hence

e2

4

∫
R3

S′(u)u
(
|u|2 − ρ(x)

)
dx+

e2

2

∫
R3

S(u)|u|2 dx

=
e2

2

∫
R3

(S(u)− S2)
(
|u|2 − ρ(x)

)
dx+

e2

2

∫
R3

S(u)|u|2 dx

= e2

∫
R3

S(u)
(
|u|2 − ρ(x)

)
dx− e2

2

∫
R3

S2

(
|u|2 − ρ(x)

)
dx+

e2

2

∫
R
S(u)ρ(x) dx

= e2

∫
R3

S(u)
(
|u|2 − ρ(x)

)
dx+

e2

2

∫
R3

{
S1(u)ρ(x)− S2|u|2 + 2S2ρ(x)

}
dx

= e2

∫
R3

S(u)
(
|u|2 − ρ(x)

)
dx+ e2

∫
R3

S(u)ρ(x) dx.

Here we used the fact
∫
R3 S1(u)ρ dx = −

∫
R3 S2|u|2 dx. Thus we �nd that the Nehari identity

corresponding to (1.1) is given by

0 =

∫
R3

{
|∇u|2 + ω|u|2 − |u|p+1 + e2S(u)

(
|u|2 − ρ(x)

)
+ e2S(u)ρ(x)

}
dx

= ‖∇u‖22 + ω‖u‖22 − ‖u‖
p+1
p+1 + 4e2A(u) + e2

∫
R3

S(u)ρ(x) dx. (2.7)

Next, we show that the Pohozaev identity associated with (1.1) is described as

0 =

∫
R3

{
1

2
|∇u|2 +

3ω

2
|u|2 − 3

p+ 1
|u|p+1 +

5e2

4
S(u)

(
|u|2 − ρ(x)

)
− e2

2
S(u)x · ∇ρ(x)

}
dx

=
1

2
‖∇u‖22 +

3ω

2
‖u‖22 −

3

p+ 1
‖u‖p+1

p+1 + 5e2A(u)− e2

2

∫
R3

S(u)x · ∇ρ(x) dx. (2.8)

First we derive (2.8) by a formal calculation. Let us consider uλ(x) = u
(
x
λ

)
, that is, take a = 0

and b = −1. Then from (2.4) and (2.5), one has

I(uλ) =
1

2
‖∇uλ‖22 +

ω

2
‖uλ‖22 −

1

p+ 1
‖uλ‖p+1

p+1 + e2A1 (uλ) + 2e2A2 (uλ) + e2A0

=
λ

2
‖∇u‖22 +

λ3ω

2
‖u‖22 −

λ3

p+ 1
‖u‖p+1

p+1 + e2λ5A1(u)− λ5e2

2

∫
R3

S1(u)ρ (λx) dx+ e2A0.

Now we suppose that u is a solution of (1.1). Since A = A1 + 2A2 +A0, it follows that

0 =
d

dλ
I (uλ)

∣∣∣
λ=1

(2.9)

=
1

2
‖∇u‖22 +

3ω

2
‖u‖22 −

3

p+ 1
‖u‖p+1

p+1 + 5e2A1(u) + 10e2A2(u)− e2

2

∫
R3

S1(u)x · ∇ρ(x) dx

=
1

2
‖∇u‖22 +

3ω

2
‖u‖22 −

3

p+ 1
‖u‖‖p+1

p+1 + 5e2A(u)− 5e2A0

− e2

2

∫
R3

S(u)x · ∇ρ(x) dx+
e2

2

∫
R3

S2x · ∇ρ(x) dx.

We put

R = −5e2A0 +
e2

2

∫
R3

S2(x)x · ∇ρ(x) dx

=
5e2

4

∫
R3

S2(x)ρ(x) dx+
e2

2

∫
R3

S2(x)x · ∇ρ(x) dx.
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Recalling that

−∆S2 =
−ρ(x)

2
and

∫
R3

|∇S2|2 dx = −1

2

∫
R3

S2ρ(x) dx,

one �nds that∫
R3

S2x · ∇ρ dx = −
∫
R3

∇S2 · xρ dx− 3

∫
R3

S2ρ dx

= −2

∫
R3

∇S2 · x∆S2 dx− 3

∫
R3

S2ρ dx

= 2

∫
R3

∇ (∇S2 · x) · ∇S2 dx− 3

∫
R3

S2ρ dx

= 2

∫
R3

|∇S2|2 dx+ 2

∫
R3

x · ∇
(

1

2
|∇S2|2

)
dx− 3

∫
R3

S2ρ dx

= 2

∫
R3

|∇S2|2 dx− 3

∫
R3

|∇S2|2 dx− 3

∫
R3

S2ρ dx

= −
∫
R3

|∇S2|2 dx− 3

∫
R3

S2ρ dx = −5

2

∫
R3

S2ρdx.

This means that R = 0. Thus from (2.9), we obtain (2.8).

A rigorous proof can be done by establishing the C1,α-regularity of any weak solution of

(1.1) for some α ∈ (0, 1). Note that since ρ ∈ Lq(R3) for some q > 3, it follows by the elliptic

regularity theory that S2 ∈W 2,q
loc (R3) ↪→ C1,α

loc (R3). The smoothness of u can be shown similarly

by applying the elliptic regularity theory. Then multiplying x · ∇ū and ex · ∇S(u) by (1.1)

respectively, integrating over BR(0) and passing to a limit R → ∞, we are able to prove (2.8)

as in [9, 11].

Lemma 2.3. Any nontrivial solution u of (1.1) satis�es the following identity.

(5p− 7)E(u) = 2(p− 2)‖∇u‖22 −
(3p− 5)ω

2
‖u‖22

− 2e2

∫
R3

S(u)ρ(x) dx− (3− p)e2

2

∫
R3

S(u)x · ∇ρ(x) dx.

Proof. From (2.7) and (2.8), we �nd that

5p− 7

p+ 1
‖u‖p+1

p+1 = 3‖∇u‖22 − ω‖u‖22 + 5e2

∫
R3

S(u)ρ(x) dx+ 2e2

∫
R3

S(u)x · ∇ρ(x) dx,

(5p− 7)e2A(u) =
5− p

2
‖∇u‖22 −

3(p− 1)ω

2
‖u‖22

+ 3e2

∫
R3

S(u)ρ(x) dx+
(p+ 1)e2

2

∫
R3

S(u)x · ∇ρ(x) dx.

Thus one deduces that

(5p− 7)E(u) =
5p− 7

2
‖∇u‖22 + (5p− 7)e2A(u)− 5p− 7

p+ 1
‖u‖p+1

p+1

= 2(p− 2)‖∇u‖22 −
(3p− 5)ω

2
‖u‖22 − 2e2

∫
R3

S(u)ρ(x) dx− (3− p)e2

2

∫
R3

S(u)x · ∇ρ(x) dx.

This ends the proof. �

3. Existence of a minimizer

In this section, we aim to prove that the minimization problem (1.5) admits a solution,

provided that the minimum energy for ρ ≡ 0 is negative and ‖ρ‖ 6
5

+ ‖x · ∇ρ‖ 6
5
is small. First

we begin with the following.



SCHRÖDINGER-POISSON SYSTEM WITH A DOPING PROFILE 9

Lemma 3.1. Suppose that 1 < p < 7
3 . Then for any µ > 0, E is bounded from below on B(µ).

Proof. We use the fact that A1 ≥ 0 and 3
2(p− 1) < 2. The Gagliardo-Nirenberg inequality, the

Young inequality and Lemma 2.1 yield that

E(u) =
1

2

∫
R3

|∇u|2 dx− 1

p+ 1

∫
R3

|u|p+1 dx+ e2A1(u) + 2e2A2(u)

≥ 1

2
‖∇u‖22 − C‖u‖

5−p
2

2 ‖∇u‖
3
2

(p−1)

2 − Ce2‖ρ‖ 6
5
‖u‖

3
2
2 ‖∇u‖

1
2
2

≥ 1

2
‖∇u‖22 −

3(p− 1)ε

4
‖∇u‖22 −

(7− 3p)C

4ε
‖u‖

2(5−p)
7−3p

2 − ε

4
‖∇u‖22 −

4Ce
8
3

3ε
‖ρ‖

4
3
6
5

‖u‖22

≥ 1

4
‖∇u‖22 − Cµ

5−p
7−3p − Ce

8
3µ‖ρ‖

4
3
6
5

≥ −Cµ
5−p
7−3p − Ce

8
3µ‖ρ‖

4
3
6
5

,

from which we conclude. �

Next we de�ne

c(µ) = inf
‖u‖22=µ

E(u). (3.1)

Instead of C(µ) de�ned in (1.5), it su�ces to show that c(µ) is attained because of (2.3).

Lemma 3.2. Suppose that 1 < p < 7
3 . Then c(µ) ≤ 0 for all µ > 0.

Proof. Let us consider uλ(x) = λ
3
2u(λx) for ‖u‖22 = µ. Note that ‖uλ‖22 = µ for any λ > 0.

Using (2.4) and (2.6), we have

E(uλ) =
λ2

2
‖∇u‖22 −

λ
3(p−1)

2

p+ 1
‖u‖p+1

p+1 + e2λA1(u) + 2e2A2 (uλ)

≤ λ2

2
‖∇u‖22 −

λ
3(p−1)

2

p+ 1
‖u‖p+1

p+1 + e2λA1(u) + Ce2λ
1
2 ‖ρ‖6‖u‖

3
2
2 ‖∇u‖

1
2
2 → 0 as λ→ +0.

This implies that c(µ) ≤ 0, as claimed. �

Lemma 3.3. Suppose that 1 < p < 7
3 . Then c(µ) satis�es the weak sub-additive condition:

c(µ) ≤ c
(
µ′
)

+ c
(
µ− µ′

)
for all 0 < µ′ < µ.

Proof. We take u1, u2 ∈ C∞0 (R3) such that ‖u1‖22 = µ′, ‖u2‖22 − µ− µ′,

suppu1 ∩ suppu2 = ∅, (3.2)

E (u1) ≤ c
(
µ′
)

+
ε

2
and E (u2) ≤ c

(
µ− µ′

)
+
ε

2
(3.3)

for arbitrary ε > 0. From (3.2), one �nds that

S1(u1 + u2) =
1

8π

∫
R3

|u1(y) + u2(y)|2

|x− y|
dy

=
1

8π

∫
R3

|u1(y)|2

|x− y|
dy +

1

8π

∫
R3

|u2(y)|2

|x− y|
dy

= S1 (u1) + S1 (u2) .
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Then it holds that

A1 (u1 + u2) =
1

4

∫
R3

S1 (u1 + u2) |u1 + u2|2 dx

=
1

4

∫
R3

(S1 (u1) + S1 (u2))
(
|u1|2 + |u2|2

)
dx

=
1

4

∫
R3

S1(u1) |u1|2 dx+
1

4

∫
R3

S1(u2) |u2|2 dx+
1

2

∫
R3

S1(u1)|u2|2 dx

= A1 (u1) +A2 (u2) +
1

16π

∫
R3

∫
R3

|u1(y)|2|u2(x)|2

|x− y|
dx dy,

and

A2 (u1 + u2) =
1

4

∫
R3

S1 (u1 + u2) ρ(x) dx = A2(u1) +A2(u2).

Thus we have

E (u1 + u2) = E (u1) + E (u2) +
1

16π

∫
R3

∫
R3

|u1(y)|2|u2(x)|2

|x− y|
dx dy.

Now we replace u2 by u2(· − k) for k ∈ R3 and put

R(k) :=
1

16π

∫
R3

∫
R3

|u1(y)|2|u2(x− k)|2

|x− y|
dx dy

=
1

16π

∫
suppu1

∫
suppu2

|u1(y)|2|u2(x− k)|2

|x− y|
dx dy.

If x ∈ suppu2+k and y ∈ suppu1, it follows that |x−y| ≥ dist (suppu1, suppu2)+|k|, provided
that |k| is su�ciently large. Then one has

R(k) ≤ 1

16πdist (suppu1, suppu2) + |k|
‖u1‖22 ‖u2‖22 → 0 as |k| → ∞.

Since ‖u1 + u2(· − k)‖2L2 = µ, we have from (3.3) that

c(µ) ≤ E (u1 + u2(· − k)) = E(u1) + E(u2) +R(k)

≤ c
(
µ′
)

+ c
(
µ− µ′

)
+ ε+R(k)

and hence
c(µ) ≤ lim sup

|k|→∞

{
c
(
µ′
)

+ c
(
µ− µ′

)
+ ε+R(k)

}
= c

(
µ′
)

+ c
(
µ− µ′

)
+ ε.

Passing a limit ε→ +0, we obtain c(µ) ≤ c (µ′) + c (µ− µ′). �

It is important to mention that c(µ) is non-increasing in µ by Lemmas 3.2 and 3.3. In order

to prove the strict sub-additivity, we recall that

E∞(u) =
1

2
‖∇u‖22 −

1

p+ 1
‖u‖p+1

p+1 + e2A1(u).

By Lemma 2.1, one �nds that

c(µ) ≤ E(u) = E∞(u) + 2e2A2(u)

≤ E∞(u) + Ce2µ
3
4 ‖ρ‖ 6

5
‖∇u‖

1
2
2 for any u ∈ B(µ).

If c∞(µ) admits a minimizer u = ue,µ, it holds that

c(µ) ≤ c∞(µ) + Ce2µ
3
4 ‖ρ‖ 6

5
‖∇ue,µ‖

1
2
2 .
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As we have mentioned in the introduction, c∞(µ) is attained when

c∞(µ) < 0 for 2 < p <
7

3
or e� 1 for 1 < p ≤ 2.

Especially it follows that

c(µ) ≤ 1

2
c∞(µ) < 0 if 2 < p <

7

3
, c∞(µ) < 0 and ‖ρ‖ 6

5
is su�ciently small. (3.4)

The next lemma is the most important in the proof of the existence of a minimizer for c(µ).

Lemma 3.4. Suppose that 2 < p < 7
3 and choose µ > 0 so that c∞(µ) < 0. Then there exists

a constant ρ0 = ρ0(e, µ) > 0 such that if ‖ρ‖ 6
5

+ ‖x · ∇ρ‖ 6
5
≤ ρ0, it follows that

c(λµ) < λc(µ) for all λ > 1.

We note that Lemma 3.4 implies that

c(µ) < c
(
µ′
)

+ c
(
µ− µ′

)
for all 0 < µ′ < µ. (3.5)

(See e.g. [23, Lemma II.1].)

Proof. The proof consists of two steps.

Step 1: We show that there exists δ > 0 such that

c (λµ) < λc(µ) for all λ ∈ (1, 1 + δ].

We take any u ∈ H1(R3) with ‖u‖22 = µ and for 2a− 3b = 1, put uλ(x) = λau
(
λbx
)
so that

‖uλ‖22 = λ2a−3b‖u‖22 = µ.

Then from (2.4) and (2.5), it follows that

E(uλ) =
λ1+2b

2
‖∇u‖22 −

λ
p+1+3(p−1)b

2

p+ 1
‖u‖p+1

p+1 + e2λ2+bA1(u)− λ1−2b

2
e2

∫
R3

S1(u)ρ
(
λ−bx

)
dx.

Let us consider

1

λ1+2b
E(uλ)− E(u)

=
‖u‖p+1

p+1

p+ 1

(
1− λ

p−1+(3p−7)b
2

)
− e2A1(u)

(
1− λ1−b

)
− 2e2A2(u)− λ−4be2

2

∫
R3

S1(u)ρ(λ−bx) dx

=: f(λ).

We claim that

f ′(1) < 0. (3.6)

For this purpose, one computes

f ′(λ) = −p− 1 + (3p− 7)b

2
· λ

p−3+(3p−7)b
2 ·

‖u‖p+1
p+1

p+ 1
+ (1− b)λ−be2A1(u)

+ 2bλ−1−4be2

∫
R3

S1(u)ρ(λ−bx) dx+
b

2
λ−1−5be2

∫
R3

S1(u)x · ∇ρ(λ−bx) dx,

from which we deduce that

f ′(1) = −p− 1 + (3p− 7)b

2
·
‖u‖p+1

p+1

p+ 1
+ (1− b)e2A1(u)− 8be2A2(u) + be2A3(u).

Now we assume that

0 < b <
p− 1

7− 3p
. (3.7)
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By the de�nition of E, one has

− 1

p+ 1
‖u‖p+1

p+1 = E(u)− 1

2
‖∇u‖22 − e2A1(u)− 2e2A2(u),

and hence

f ′(1) =
p− 1 + (3p− 7)b

2
E(u)− p− 1 + (3p− 7)b

4
‖∇u‖22 +

1

2

(
3− p+ (5− 3p)b

)
e2A1(u)

−
(
p− 1 + (3p+ 1)b

)
e2A2(u) + be2A3(u).

Next since p > 2, we can take b > 0 so that

3− p+ (5− 3p)b ≤ 0. (3.8)

Indeed one can choose b = 1 because p−1
7−3p > 1. Then from (2.2), one has

f ′(1) ≤ p− 1 + (3p− 7)b

2
E(u)− p− 1 + (3p− 7)b

4
‖∇u‖22

−
(
p− 1 + (3p+ 1)b

)
e2A2(u) + be2A3(u).

Moreover by Lemma 2.1 and the Young inequality, for any ε′ > 0, we obtain

f ′(1) ≤ p− 1 + (3p− 7)b

2
E(u)− p− 1 + (3p− 7)b

4
‖∇u‖22

+ Ce2µ
3
4 ‖ρ‖ 6

5
‖∇u‖

1
2
2 + Ce2µ

3
4 ‖x · ∇ρ‖ 6

5
‖∇u‖

1
2
2

≤ p− 1 + (3p− 7)b

2
E(u)−

(
p− 1 + (3p− 7)b

2
− 2ε′

)
‖∇u‖22

+
C

ε′
e

8
3µ

(
‖ρ‖

4
3
6
5

+ ‖x · ∇ρ‖
4
3
6
5

)
,

where C is a positive constant independent of e, µ, ρ and u.

For any ε ∈
(
0,−1

4c∞(µ)
)
, we take uε ∈ H1(R3) with ‖uε‖22 = µ so that E (uε) ≤ c(µ) + ε.

Then from (3.4), one gets

E(uε) ≤
1

2
c∞(µ) + ε ≤ 1

4
c∞(µ) < 0. (3.9)

Putting u = uε into the previous inequality, we have from (3.9) that

f ′(1) ≤ p− 1 + (3p− 7)b

8
c∞(µ) + Ce

8
3µ

(
‖ρ‖

4
3
6
5

+ ‖x · ∇ρ‖
4
3
6
5

)
.

Since p− 1 + (3p− 7)b > 0, c∞(µ) is negative and independent of ρ, we �nd that

‖ρ‖ 6
5

+ ‖x · ∇ρ‖ 6
5
≤ ρ0 ⇒ f ′(1) < 0 for some ρ0 = ρ0(e, µ) > 0,

which ends the proof of (3.6).

Now from (3.6) and f(1) = 0, there exists δ > 0 independent of the choice of uε such that

f(λ) < 0 for λ ∈ (1, 1 + δ]. Recalling that E (uλ)− λ1+2bE(u) = λ1+2bf(λ), one �nds that

c(λµ) ≤ E ((uε)λ) < λ1+2bE(uε) ≤ λ1+2b(c(µ) + ε).

Taking a limit ε→ 0, we get

c(λµ) ≤ λ1+2bc(µ).

Since λ > 1, b > 0 and from (3.4), it holds that

c(λµ) < λc(µ) for λ ∈ (1, 1 + δ].

Step 2: We prove that c(λµ) < λc(µ) for any λ > 1. For this purpose, we �x λ > 1 and choose

t0 ∈ (0, δ), m ∈ N so that

(1 + t0)m ≤ λ < (1 + t0)m+1 .
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This implies that

1 ≤ λ

(1 + t0)m
< 1 + t0 < 1 + δ.

By Step 1, we have

c(λµ) = c

(
(1 + t0)

λµ

1 + t0

)
< (1 + t0) c

(
λµ

1 + t0

)
= (1 + t0) c

(
(1 + t0)

λµ

(1 + t0)2

)
< (1 + t0)2 c

(
λµ

(1 + t0)2

)
< (1 + t0)m c

(
λ

(1 + t0)m
· µ
)

< (1 + t0)m · λ

(1 + t0)m
c(µ) = λc(µ),

from which we conclude. �

Remark 3.5. In the case 1 < p ≤ 2, (3.7) yields that 0 < b < 1. On the other hand if

1 < p ≤ 5
3 , one �nds that 3− p+ (5− 3p)b > 0 and hence (3.8) cannot hold. When 5

3 < p ≤ 2,

we also have

3− p+ (5− 3p)b > 4(2− p) ≥ 0,

implying that (3.8) is impossible. Note that (3.8) was used to remove A1(u) which is independent

of ρ. We also mention that the choice b = 1 corresponds to the scaling uλ(x) = λ2u(λx).

In the case 1 < p ≤ 2, another strategy is needed to establish the strict sub-additivity. We

show that the strict sub-additivity for 1 < p ≤ 2 holds if the coupling constant e is su�ciently

small. For this purpose, we �rst establish the following asymptotic behavior.

Lemma 3.6. Suppose that 1 < p < 7
3 . Let c0(µ) be the minimum energy de�ned by

c0(µ) := inf
u∈B(µ)

E0(u), E0(u) =
1

2
‖∇u‖22 −

1

p+ 1
‖u‖p+1

p+1.

Writing c(µ) = ce(µ) to emphasize the dependence of e, it holds that

ce(µ)→ c0(µ) < 0 for all µ > 0 as e→ +0.

Especially it follows that

ce(µ) ≤ 1

2
c0(µ) < 0 provided that e > 0 is su�ciently small.

Proof. By Lemma 2.1, we know that

ce(µ) ≤ E(u) = E0(u) + e2A1(u) + 2e2A2(u)

≤ E0(u) + Ce2µ
3
2 ‖∇u‖2 + Ce2µ

3
4 ‖ρ‖ 6

5
‖∇u‖

1
2
2 for any u ∈ B(µ).

Since c0(µ) is negative and has a minimizer u0 for all µ > 0 (see [12]), it follows that

lim sup
e→+0

ce(µ) ≤ c0(µ) + lim
e→+0

(
Ce2µ

3
2 ‖∇u0‖2 + Ce2µ

3
4 ‖ρ‖ 6

5
‖∇u0‖

1
2
2

)
= c0(µ).

On the other hand, let {uj} ⊂ B(µ) be a minimizing sequence for ce(µ). By Lemma 3.1, we

�nd that ‖∇uj‖2 is bounded and hence

c0(µ)− Ce2 ≤ E0(uj)− Ce2 ≤ E0(uj) + e2A1(uj) + 2e2A2(uj) = E(uj).

Passing a limit j →∞, one obtains

c0(µ)− Ce2 ≤ ce(µ)
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and

c0(µ) ≤ lim inf
e→+0

ce(µ).

This competes the proof. �

Now we are ready to prove the strict sub-additivity when 1 < p ≤ 2. In this case, we use the

scaling uλ(x) = u(λ−
1
3x).

Lemma 3.7. Suppose that 1 < p ≤ 2. Then there exists e0 = e0(µ, ρ) > 0 such that if

0 < e ≤ e0, the following properties hold.

(i) c(λµ) ≤ λc(µ) for all λ > 1. Moreover if c(µ) is attained, the inequality is strict.

(ii) For 0 < µ′ < µ, suppose that either c(µ′) or c(µ− µ′) is attained. Then (3.5) holds.

Proof. (i) Under the same notation as the proof Lemma 3.4, let us consider

g(λ) := E(uλ)− λE(u)

=
λ1+2b − λ

2
‖∇u‖22 −

λ
p+1+3(p−1)b

2 − λ
p+ 1

‖u‖p+1
p+1

+ e2(λ2+b − λ)A1(u)− λ1−2be2

2

∫
R3

S1(u)ρ(λ−bx) dx− 2λe2A2(u).

Then one has g(1) = 0 and

g′(1) = b‖∇u‖22 −
(p− 1)(1 + 3b)

2(p+ 1)
‖u‖p+1

p+1 + (1 + b)e2A1(u)− 4be2A2(u) + be2A3(u).

Choosing b = −1
3 , we obtain

g′(1) = −1

3
‖∇u‖22 +

2

3
e2A1(u) +

4

3
e2A2(u)− 1

3
e2A3(u).

By Lemma 2.1, we can estimate g′(1) as

g′(1) ≤ −1

3
‖∇u‖22 + Ce2µ

3
2 ‖∇u‖2 + Ce2µ

3
4 ‖ρ‖ 6

5
‖∇u‖

1
2
2 + Ce2µ

3
4 ‖x · ∇ρ‖ 6

5
‖∇u‖

1
2
2

≤ −
(

1

3
− 3ε′

)
‖∇u‖22 + C

(
e4µ3 + e

8
3µ‖ρ‖

4
3
6
5

+ e
8
3µ‖x · ∇ρ‖

4
3
6
5

)
, (3.10)

where ε′ ∈
(
0, 1

9

)
and C is a positive constant independent of e, µ, ρ and u.

For any ε ∈
(
0,−1

4c0(µ)
)
, let uε ∈ H1(R3) be such that ‖uε‖22 = µ and E(uε) ≤ c(µ) + ε.

We claim that there exists δ0 > 0 independent of ε such that ‖∇uε‖2 ≥ δ0. Indeed suppose by

contradiction that there is a sequence {εj} with εj → 0 and {uj} ⊂ H1(R3) with ‖uj‖22 = µ

such that E(uj) ≤ c(µ) + εj but ‖∇uj‖2 → 0 as j → ∞. Then it follows that ‖uj‖q → 0 for

any q ∈ (2, 6) and hence by Lemma 2.1,

E(uj) =
1

2
‖∇uj‖22 −

1

p+ 1
‖uj‖p+1

p+1 + e2A1(uj) + 2e2A2(uj)→ 0.

This contradicts Lemma 3.6. We also mention that δ0 is independent of e.

Now from (3.10), we �nd that there exists e0 > 0 independent of ε such that

g′(1) < 0 for 0 < e ≤ e0 and for ε ∈
(

0,−1

4
c0(µ)

)
.

Since g(1) = 0, it follows that g(λ) < 0 for λ ∈ (1, 1 + δ], where δ > 0 is independent of ε. By

the de�nition of g(λ), one has

c(λµ) ≤ E
(
(uε)λ

)
< λE(uε) ≤ λ(c(µ) + ε).
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Passing to a limit ε→ 0, we obtain

c(λµ) ≤ λc(µ) for λ ∈ (1, 1 + δ].

Arguing similarly as in the proof of Lemma 3.4, we deduce that c(λµ) ≤ λc(µ) for all λ > 1.

If c(µ) admits a minimizer uµ, we choose uµ as a test function. By Lemma 3.6, we can show

that ‖∇uµ‖2 ≥ δ0 for some δ0 > 0 independent of e, from which we obtain

c(λµ) ≤ E
(
(uµ)λ

)
< λE(µ) = λc(µ).

This ends the proof of (i).

(ii) If µ2 < µ′ < µ, one has from (i) that

c(µ) = c

(
µ

µ′
µ′
)
≤ µ

µ′
c(µ′) = c(µ′) +

µ− µ′

µ′
c

(
µ′

µ− µ′
(µ− µ′)

)
≤ c(µ′) + c(µ− µ′),

and the inequality is strict if either c(µ′) or c(µ − µ′) is achieved. In the case 0 < µ′ < µ
2 , we

also have

c(µ) = c

(
µ

µ− µ′
(µ− µ′)

)
≤ µ

µ− µ′
c(µ−µ′) = c(µ−µ′)+ µ′

µ− µ′
c

(
µ− µ′

µ′
· µ′
)
≤ c(µ′)+c(µ−µ′).

When µ′ = µ
2 , it follows that

c(µ) = c
(

2 · µ
2

)
≤ 2c

(µ
2

)
= 2c(µ′) = c(µ′) + c(µ− µ′),

from which we conclude. �

The next lemma deals with the compactness of any minimizing sequence for (3.1).

Lemma 3.8. Suppose that 1 < p < 7
3 . Assume that c(µ) < 0 and c(µ) satis�es (3.5). Let

{uj} ⊂ H1(R3,C) be a sequence satisfying ‖uj‖22 → µ and E(uj)→ c(µ).

Then there exist a subsequence of {uj} which is still denoted by the same, a sequence {yj} ⊂
R3 and uµ ∈ H1(R3,C) such that uj(· − yj)→ uµ in H1(R3,C) and E(uµ) = c(µ).

At �rst sight, Lemma 3.8 seems to be rather standard, once we have established the strict

sub-additivity. But it is not straightforward in the case 1 < p ≤ 2, because we have assumed

the attainability of c(µ) to guarantee (3.5) in the statement of Lemma 3.7.

Proof. First we observe by the proof of Lemma 3.1 that ‖uj‖H1 is bounded. Moreover by

replacing uj by
√
µ

‖uj‖22
uj , we may assume that {uj} is a minimizing sequence of c(µ).

Now we apply the concentration compactness principle [23, Lemma I.1, p. 115] to the

sequence ρj(x) = |uj(x)|2. It is well-known that the behavior of the sequence (ρj)j∈N is governed

by the three possibilities: Compactness, Vanishing and Dichotomy. Our goal is to show that

Compactness occurs.

If Vanishing occurs, there exists a subsequence of {ρj}, still denoted by {ρj}, such that

lim
j→∞

sup
y∈R3

∫
BR(y)

ρj(x) dx = 0 for all R > 0.

Here BR(y) describes a ball of radius R with the center at y ∈ R3. Then by [24, Lemma I.1,

P. 231], it follows that uj → 0 in Lq(R3) for any q ∈ (2, 6). On the other hand since {uj} is a
minimizing sequence for c(µ), one has by Lemma 2.1 that

c(µ) + o(1) = E(uj) =
1

2
‖∇uj‖22 −

1

p+ 1
‖uj‖p+1

p+1 + e2A1(uj) + 2e2A2(uj)

≥ − 1

p+ 1
‖uj‖p+1

p+1 − C‖ρ‖ 6
5
‖uj‖212

5

.

Passing a limit j →∞, we get 0 > c(µ) ≥ 0. This is a contradiction, which rules out Vanishing.
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Next we assume that Dichotomy occurs. Then by a standard argument (see [24, Section I.2]

or [11, Proposition 1.7.6, P. 23]), there exist µ′ ∈ (0, µ) and {uj,1}, {uj,2} ⊂ H1(R3,C) such

that

‖uj,1‖2L2 → µ′, ‖uj,2‖2L2 → µ− µ′,

supp(uj,1) ∩ supp(uj,2) = ∅, δj := dist
(
supp(uj,1), supp(uj,2)

)
→∞, (3.11)

‖uj − uj,1 − uj,2‖q → 0 for all 2 ≤ q < 6, (3.12)∫
R3

(
|∇uj |2 − |∇uj,1|2 − |∇uj,2|2

)
dx ≥ o(1). (3.13)

Moreover replacing uj,1, uj,2 by
√
µ′

‖uj,1‖22
uj,1,

√
µ−µ′
‖uj,2‖22

uj,2 respectively, we may assume that ‖uj,1‖22 =

µ′, ‖uj,2‖22 = µ− µ′ and (3.11)-(3.13) hold. Now from (3.11), one has∫
R3

∫
R3

|uj,1(x)|2|uj,2(y)|2

|x− y|
dx dy =

∫
supp(uj,2)

∫
supp(uj,1)

|uj,1(x)|2|uj,2(y)|2

|x− y|
dx dy

≤ 1

δj
‖uj,1‖22‖uj,2‖22 → 0 as j →∞.

Using (3.12) and arguing as in the proof of Lemma 2.2 in [31], a direct computation yields that

A1(uj)−A1(uj,1)−A1(uj,2) =

∫
R3

S1(uj)|uj |2 − S1(uj,1)|uj,1|2 − S1(uj,2)|uj,2|2 dx

=

∫
R3

{(
S1(uj)|uj |+ S1(uj,1)|uj,1|+ S1(uj,2)|uj,2|

)(
|uj | − |uj,1| − |uj,2|

)
+ |uj |

(
|uj,1|+ |uj,2|

)(
S1(uj)− S1(uj,1)− S1(uj,2)

)
+ |uj,1||uj,2|

(
S1(uj,1) + S1(uj,2)

)
+ |uj |

(
|uj,1|S1(uj,2) + |uj,2|S1(uj,1)

)}
dx

→ 0 (n→∞).

Similarly, one �nds that

A2(uj)−A2(uj,1)−A2(uj,2)→ 0.

Thus from (3.12) and (3.13), we obtain

c(µ) = E(uj) + o(1)

≥ E(uj,1) + E(uj,2) + o(1)

≥ c(µ′) + c(µ− µ′) + o(1).

Taking lim inf
j→∞

in both sides, one �nds that

c(µ) ≥ c(µ′) + c(µ− µ′). (3.14)

When 2 < p < 7
3 , this readily leads a contradiction by Lemma 3.4.

Next we consider the case 1 < p ≤ 2. By Lemma 3.2, one knows that c(µ′) ≤ 0 and

c(µ − µ′) ≤ 0. Since c(µ) < 0, it follows from (3.14) that either c(µ′) or c(µ − µ′) must be

negative. We suppose that c(µ′) < 0 and distinguish into four steps to derive a contradiction.

Step 1: If lim inf
j→∞

E(uj,1) > c(µ′), we have

c(µ) ≥ lim inf
j→∞

E(uj,1) + c(µ− µ′) > c(µ′) + c(µ− µ′),

which contradicts Lemma 3.3.

Step 2: Passing to a subsequence, we may assume that E(uj,1)→ c(µ′) as j →∞. From (3.13)

and the boundedness of ‖uj‖H1 , there exists u1 ∈ H1(R3,C) such that uj,1 ⇀ u1 in H1(R3).

Since {uj,1} is a minimizing sequence for c(µ′) and c(µ′) < 0, Vanishing does not occur and
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hence u1 6= 0. If uj,1 → u1 in H1(R3), it holds that E(u1) = c(µ′), yielding that c(µ′) has a

minimizer. Then from (3.14) and Lemma 3.7 (ii), we arrive at a contradiction.

Step 3: When uj,1 6→ u1 in H1(R3), we de�ne vj := uj,1 − u1 so that vj ⇀ 0 but vj 6→ 0 in

H1(R3). Putting µ′′ = ‖u1‖22, one �nds that 0 < µ′′ < µ′ because ‖vj‖22 = µ′ − µ′′ + o(1) and

vj 6→ 0. Normalizing vj again, we may assume that ‖vj‖22 = µ′ − µ′′. Then by Lemma 2.2 and

the Brezis-Lieb lemma, we obtain

c(µ′) = E(uj,1) + o(1) = E(vj) + E(u1) + o(1) ≥ c(µ′ − µ′′) + E(u1) + o(1).

Passing to a limit j →∞, we deduce that

c(µ′) ≥ c(µ′ − µ′′) + E(u1). (3.15)

If u1 is a minimizer for c(µ′′), then (3.15) and Lemma 3.7 (ii) lead to a contradiction.

Step 4: If u1 is not a minimizer for c(µ′′), we have from (3.15) and Lemma 3.3 that

c(µ′′) + c(µ′ − µ′′) ≥ c(µ′) ≥ c(µ′ − µ′′) + E(u1) > c(µ′ − µ′′) + c(µ′′)

and deduce a contradiction.

In any cases, we arrive at a contradiction. If c(µ′) = 0 and c(µ− µ′) < 0, we argue similarly

for uj,2. Thus Dichotomy does not occur.

The only remaining possibility is Compactness, that is, there exists {yj} ⊂ R3 such that for

all ε > 0, there exists Rε > 0 satisfying∫
BRε (yj)

|uj(x)|2 dx ≥ µ− ε. (3.16)

Since ‖uj‖H1 is bounded, there exists uµ ∈ H1(R3,C) such that up to a subsequence,

uj(· − yj) ⇀ uµ in H1(R3,C). Then from (3.16), it follows that uj(· − yj) → uµ in Lq(R3,C)

for any 2 ≤ q < 6. Thus by the weak lower semi-continuity of ‖∇ · ‖2 and by Lemma 2.2, we

get

c(µ) = lim inf
j→∞

E
(
uj(· − yj)

)
≥ E(uµ) ≥ c(µ).

This implies that E(uµ) = c(µ) and ‖∇uj(·−yj)‖2 → ‖∇uµ‖2. Thus we obtain uj(·−yj)→ uµ
in H1(R3,C) and hence the proof is complete. �

Remark 3.9. By the relation between E and E in (2.3), the relative compactness of minimizing

sequences for (1.5) also holds true, which will be applied to show the orbital stability later on.

Now suppose that u ∈ H1(R3,C) is a minimizer of (3.1), that is, E(u) = c(µ) and ‖u‖22 = µ.

Up to a phase shift, we may assume that u is real-valued. Indeed by the well-known pointwise

inequality
∣∣∇|u|∣∣ ≤ |∇u|, one can see that |u| is also a minimizer and hence u can be chosen to

be real-valued.

Furthermore there exists a Lagrange multiplier ω = ω(µ) ∈ R such that u satis�es (1.1) with

some constant ω(µ).

Lemma 3.10. Suppose that 2 < p < 7
3 and choose µ > 0 so that c∞(µ) < 0. Then there exists

ρ0 = ρ0(e, µ) > 0 such that if ‖ρ‖ 6
5

+ ‖x · ∇ρ‖ 6
5
≤ ρ0, the Lagrange multiplier ω = ω(µ) is

positive.

Proof. Let u be a minimizer for c(µ). From (2.3) and (3.4), we �rst note that

E(u) = E(u) + e2A0 = c(µ) + e2A0 ≤
1

2
c∞(µ) + e2A0.
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Then by Lemma 2.3, it follows that

(3p− 5)ωµ

2
≥ −5p− 7

2
c∞(µ) + 2(p− 2)‖∇u‖22 − (5p− 7)e2A0

− 2e2

∫
R3

S(u)ρ(x) dx− (3− p)e2

2

∫
R3

S(u)x · ∇ρ(x) dx

= −5p− 7

2
c∞(µ) + 2(p− 2)‖∇u‖22

+ 8e2A2(u) + 5(3− p)e2A0 − (3− p)e2A3(u)− (3− p)e2A4.

Since p > 2, one can choose ε ∈
(
0, 2(p− 2)

)
. Lemma 2.1 and the Young inequality yield that

(3p− 5)ωµ

2
≥ −5p− 7

2
c∞(µ) + 2(p− 2)‖∇u‖22 − Ce2‖ρ‖26

5

− Ce2µ
3
4 ‖ρ‖ 6

5
‖∇u‖

1
2
2 − Ce

2µ
3
4 ‖x · ∇ρ‖ 6

5
‖∇u‖

1
2
2 − Ce

2‖ρ‖ 6
5
‖x · ∇ρ‖ 6

5

≥ −5p− 7

2
c∞(µ) +

(
2(p− 2)− ε

)
‖∇u‖22 − Ce2‖ρ‖26

5

− Ce
8
3µ‖ρ‖

4
3
6
5

− Ce
8
3µ‖x · ∇ρ‖

4
3
6
5

− Ce2‖ρ‖ 6
5
‖x · ∇ρ‖ 6

5
,

where C is a positive constant independent of e, µ and ρ. Since (5p− 7)c∞(µ) < 0, there exists

ρ0 > 0 such that if ‖ρ‖ 6
5

+ ‖x · ∇ρ‖ 6
5
≤ ρ0, it follows that

(3p− 5)

2
ωµ ≥ −5p− 7

4
c∞(µ) > 0,

from which we conclude. �

Proof of Theorem 1.1. It is a direct consequence of Lemmas 3.1, 3.4, 3.7, 3.8 and 3.10. �

4. Global well-posedness of the Cauchy problem

In this section, we consider the solvability of the Cauchy problem:
iψt + ∆ψ − eφψ + |ψ|p−1ψ = 0 in R+ × R3,

−∆φ = e
2

(
|ψ|2 − ρ(x)

)
in R+ × R3,

ψ(0, x) = ψ0,

(4.1)

where e > 0, 1 < p < 5 and ψ0 ∈ H1(R3,C). For the doping pro�le ρ, we only assume that

ρ ∈ L
6
5 (R3). Then we have the following result on the local well-posedness.

Proposition 4.1. There exists T = T (‖ψ0‖H1(R3)) > 0 such that (4.1) has a unique solution

ψ ∈ X, where

X =
{
ψ ∈ C

(
[0, T ], H1(R3)

)
∩ L∞

(
(0, T ), H1(R3)

)}
.

Furthermore, ψ satis�es the energy conservation law and the charge conservation law:

E
(
ψ(t)

)
= E(ψ0) and ‖ψ(t)‖2 = ‖ψ0‖2 for all t ∈ (0, T ).

Although it seems that Proposition 4.1 can be obtained in the framework of [11, Proposition

3.2.9, Theorem 4.3.1 and Corollary 4.3.3], we give the proof for the sake of completeness and

reader's convenience. For this purpose, we �rst recall the following inequalities in R3.

Lemma 4.2 (Strichartz's estimates). Let eit∆ be the linear propagator generated by the free

Schrödinger equation iψt + ∆ψ = 0. Assume that pairs (q0, r0), (q1, r1), (q2, r2) are admissible,

namely, they ful�ll the relation:

2

qi
= 3

(
1

2
− 1

ri

)
, 2 ≤ ri ≤ 6 (i = 0, 1, 2).
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(i) There exists C > 0 such that

‖eit∆f‖Lq0 (R,Lr0 (R3)) ≤ C‖f‖L2(R3) for all f ∈ L2(R3).

(ii) Let I ⊂ R be an interval, J = Ī and t0 ∈ J . Then there exists C > 0 independent of I

such that∥∥∥∥∫ t

t0

ei(t−s)∆f(s) ds

∥∥∥∥
Lq1 (I,Lr1 (R3))

≤ C‖f‖
Lq′2 (I,Lr′2 (R3))

for all f ∈ Lq′2(I, Lr
′
2(R3)),

where q′2 and r′2 are Hölder conjugate exponents of q2 and r2 respectively.

Lemma 4.3 (Hardy-Littlewood-Sobolev inequality). Let 0 < α < 3 and 1 < q < r <∞ satisfy
1
q −

1
r = 1− α

3 , and de�ne Iαf by

Iαf(x) :=

∫
R3

|x− y|−αf(y) dy.

Then there exists C > 0 such that

‖Iαf‖r ≤ C‖f‖q for all f ∈ Lq(R3).

For simplicity, we write Lq(I, Lr(R3)) as LqtL
r
x(I ×R3) and use a notation A . B if there is

a positive constant independent of A and B such that A ≤ CB.

Proof of Proposition 4.1. First as we have seen in Subsection 2.1, the Poisson equation (2.1)

has a unique solution

ψ = eS(ψ) ∈ D1,2
x (R3) for any ψ ∈ H1

x(R3).

Let us consider the Duhamel formula associated with (4.1) and the solution map H(ψ) which

is de�ned by

H(ψ) := eit∆ψ0 + i

∫ t

0
ei(t−s)∆|ψ|p−1ψ ds− e2i

∫ t

0
ei(t−s)∆S(ψ)ψ ds. (4.2)

For T > 0 and M = 3‖ψ0‖H1(R3), we also de�ne a complete metric space

XT :=
{
ψ ∈ L∞t H1

x

(
(−T, T )× R3

)
∩ L

4(p+1)
3(p−1)

t W 1,p+1
x

(
(−T, T )× R3

)
;

‖ψ‖L∞t H1
x
≤M, ‖ψ‖

L

4(p+1)
3(p−1)
t W 1,p+1

x

≤M
}

equipped with the distance

d(ψ1, ψ2) = ‖ψ1 − ψ2‖
L

4(p+1)
3(p−1)
t Lp+1

x

+ ‖ψ1 − ψ2‖L∞t L2
x
.

Note that
(

4(p+1
3(p−1) , p+ 1

)
and (∞, 2) are both admissible. For simplicity, we write q = 4(p+1)

3(p−1) .

It su�ces to show that H is a contraction mapping on XT provided that T is su�ciently small.

First we establish that H maps XT into itself. To this aim, we apply Lemma 4.2 to �nd that

‖H(ψ)‖L∞t H1
x([0,T ]×R3) . ‖ψ0‖H1(R3) + ‖S(ψ)ψ‖

L
4
3
t W

1, 32
x ([0,T ]×R3)

+ ‖|ψ|p−1ψ‖
Lq′
t W

1,
p+1
p

x ([0,T ]×R3)
,

‖H(ψ)‖
Lq
tW

1,p+1
x ([0,T ]×R3)

. ‖ψ0‖H1(R3) + ‖S(ψ)ψ‖
L

4
3
t W

1, 32
x ([0,T ]×R3)

+ ‖|ψ|p−1ψ‖
Lq′
t W

1,
p+1
p

x ([0,T ]×R3)
.
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Here we mention that
(

4
3

)′
= 4,

(
3
2

)′
= 3 and the pair (4, 3) is admissible. By the Hölder

inequality and the Sobolev inequality, it follows that

‖|ψ|p−1ψ‖
Lq′
t L

p+1
p

x

=

(∫ T

0
‖ψ‖q

′

Lp+1
x
‖ψ‖(p−1)q′

Lp+1
x

dt

) 1
q′

≤ ‖ψ‖
Lq
tL

p+1
x

(∫ T

0
‖ψ‖

2(p−1)(p+1)
5−p

Lp+1
x

dt

) 5−p
2(p+1)

. T
5−p

2(p+1) ‖ψ‖
Lq
tL

p+1
x
‖ψ‖p−1

L∞t H1
x
≤MpT

5−p
2(p+1) , (4.3)

where we used the fact q′
(

1− q′

q

)−1
= 2(p+1)

5−p . Similarly one has

‖∇(|ψ|p−1ψ)‖
Lq′
t L

p+1
p

x

. ‖|ψ|p−1∇ψ‖
Lq′
t L

p+1
p

x

. T
5−p

2(p+1) ‖∇ψ‖
Lq
tL

p+1
x
‖ψ‖p−1

L∞t H1
x
≤MpT

5−p
2(p+1) . (4.4)

Next by Lemma 2.1 and the fact S(ψ) = S1(ψ) + S2, we have

‖S(ψ)ψ‖
L

4
3
t L

3
2
x

≤
(∫ T

0
‖S(ψ)‖

4
3

L6
x
‖ψ‖

4
3

L2
x
dt

) 3
4

. T
3
4 ‖S(ψ)‖L∞t L6

x
‖ψ‖L∞t L2

x

. T
3
4

(
‖ψ‖2L∞t H1

x
+ ‖ρ‖ 6

5

)
‖ψ‖L∞t L2

x
≤M(M2 + 1)T

3
4 , (4.5)

‖∇(S(ψ)ψ)‖
L

4
3
t L

3
2
x

≤ ‖ψ∇S(ψ)‖
L

4
3
t L

3
2
x

+ ‖S(ψ)∇ψ‖
L

4
3
t L

3
2
x

. T
3
4 ‖∇S(ψ)‖L∞t L2

x
‖ψ‖L∞t L6

x
+ T

3
4 ‖S(ψ)‖L∞t L6

x
‖∇ψ‖L∞t L2

x

. T
3
4 (‖ψ2

L∞t H1
x

+ ‖ρ‖ 6
5
)‖ψ‖L∞t H1

x
≤M(M2 + 1)T

3
4 . (4.6)

Thus from (4.3)-(4.6), one �nds that

‖H(ψ)‖L∞t H1
x([0,T ]×R3) .

M

3
+MpT

5−p
2(p+1) +M(M2 + 1)T

3
4 ,

‖H(ψ)‖
Lq
tW

1,p+1
x ([0,T ]×R3)

.
M

3
+MpT

5−p
2(p+1) +M(M2 + 1)T

3
4 .

Choosing T su�ciently small, it follows that

‖H(ψ)‖L∞t H1
x([0,T ]×R3) ≤M, ‖H(ψ)‖

Lq
tW

1,p+1
x ([0,T ]×R3)

≤M

and hence H maps XT into itself.

Finally we prove that H is a contraction mapping on XT . Applying Lemma 4.2 again, we

�rst observe that

d
(
H(ψ1),H(ψ2)

)
. ‖|ψ1|p−1ψ1−|ψ2|p−1ψ2‖

Lq′
t L

p+1
p

x ([0,T ]×R3)
+‖S(ψ1)ψ1−S(ψ2)ψ2‖

L
4
3
t L

3
2
x ([0,T ]×R3)

.

By the Hölder inequality, it follows that

‖|ψ1|p−1ψ1 − |ψ2|p−1ψ2‖
Lq′
t L

p+1
p

x

.

(∫ T

0
‖ψ1 − ψ2‖q

′

Lp+1
x

(
‖ψ1‖p−1

Lp+1
x

+ ‖ψ2‖p−1

Lp+1
x

)q′
dt

) 1
q′

. T
5−p

2(p+1) ‖ψ1 − ψ2‖Lq
tL

p+1
x

(
‖ψ‖p−1

L∞t H1
x

+ ‖ψ2‖p−1
L∞t H1

x

)
≤Mp−1T

5−p
2(p+1)d(ψ1, ψ2). (4.7)

Moreover one has

‖S(ψ1)ψ1 − S(ψ2)ψ2‖
L

4
3
t L

3
2
x

≤ ‖S(ψ1)(ψ1 − ψ2)‖
L

4
3
t L

3
2
x

+ ‖(S(ψ1)− S(ψ2))ψ2‖
L

4
3
t L

3
2
x

. T
3
4 ‖S(ψ1)‖L∞t L6

x
‖ψ1 − ψ2‖L∞t L2

x
+ T

3
4 ‖S(ψ1)− S(ψ2)‖L∞t L6

x
‖ψ2‖L∞t L2

x
.
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Here we recall that

S(ψ1)− S(ψ2) = S1(ψ1) + S2 − S1(ψ2)− S2 =
1

8π|x|
∗ (|ψ1|2 − |ψ2|2)

=
1

8π

∫
R3

|x− y|−1(|ψ1(y)|2 − |ψ2(y)|2) dy.

Applying Lemma 4.3 with α = 1, q = 6
5 and r = 6, one gets

‖S(ψ1)− S(ψ2)‖L6
x
. ‖|ψ1|2 − |ψ2|2‖

L
6
5
x

. ‖ψ1 − ψ2‖L2
x
(‖ψ1‖L3

x
+ ‖ψ2‖L3

x
),

from which we �nd that

‖S(ψ1)− S(ψ2)‖
L

4
3
t L

3
2
x

.M2T
3
4 ‖ψ1 − ψ2‖L∞t L2

x
≤M2T

3
4d(ψ1 − ψ2). (4.8)

From (4.7) and (4.8), it follows that

d
(
H(ψ1),H(ψ2)

)
≤ 1

2
d(ψ1 − ψ2),

provided that T is su�ciently small.

Since H is a contraction mapping, there exists a unique �xed point ψ, that is, ψ satis�es

(4.2). By the Strichartz estimate, we can also �nd that H(ψ) ∈ C([0, T ], H1(R3)) (see [11,

Theorem 2.3.3]) and hence ψ ∈ C([0, T ], H1(R3)). Thus ψ is a unique solution on (4.1) in

X. Once we could obtain the local well-posedness in H1, a standard argument shows that the

energy conservation law and the charge conservation law hold. �

Finally in this section, we prove the following global well-posedness result in the L2-subcritical

case, which is a direct consequence of the conservation laws.

Proposition 4.4. Suppose that 1 < p < 7
3 . Then the unique solution ψ obtained in Proposition

4.1 exists globally in t > 0.

Proof. It is su�cient to show that there exists C > 0 independent on t such that ‖∇ψ(t)‖L2
x
≤ C

for all t in the existence interval.

Now by the de�nition of the energy E , the Gagliardo-Nirenberg inequality and Lemma 2.1,

one has

‖∇ψ‖2L2
x

= 2E(ψ) +
1

p+ 1
‖ψ‖p+1

Lp+1
x
− e2A1(ψ)− 2e2A2(ψ)− e2A0

. 2E(ψ) + ‖ψ‖
5−p
2

L2
x
‖∇ψ‖

3(p−1)
2

L2
x

+ ‖ψ‖3L2
x
‖∇ψ‖L2

x
+ ‖ρ‖ 6

5
‖ψ‖

3
2

L2
x
‖∇ψ‖

1
2

L2
x

+ ‖ρ‖26
5

.

Moreover using the Young inequality and the two conservations laws, for any ε′ ∈ (0, 1), we

deduce that

‖∇ψ‖2L2
x
. 2E(ψ0) + ε′‖∇ψ‖2L2

x
+ ‖ψ0‖

2(5−p)
7−3p

2 + ‖ψ0‖62 + ‖ρ‖ 6
5
‖ψ0‖2 + ‖ρ‖26

5

,

from which we conclude. �

5. Stability of standing waves

In this section, we prove the orbital stability of standing waves associated with minimizers

for C(µ), which is a direct consequence of Lemma 3.8.

Proof of Theorem 1.2. The proof follows the argument of [12]. First we observe, since φ(t, ·) =
e
2(−∆)−1|ψ(t, ·)|2, that if

sup
t>0

{
inf

u∈M(µ)

∥∥ψ(t, ·)− u(·)
∥∥
H1

}
< ε,
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one also has

sup
t>0

inf
u∈M(µ)

∥∥∥φ(t, ·)− e

2
(−∆)−1|u(·)|2

∥∥∥
D1,2

< Cε

for some C > 0 independent of ε. Thus it is enough to prove that for every ε > 0, there exists

δ(ε) > 0 such that for any initial data ψ(0) satisfying

inf
u∈M(µ)

‖ψ(0) − u‖H1 < δ,

the corresponding solution ψ veri�es

sup
t>0

inf
u∈M(µ)

‖ψ(t, ·)− u(·)‖H1 < ε.

For that purpose, we assume by contradiction that there exist ε0 > 0,(
ψ(0)j

)
j∈N ⊂ H

1(R3,C)

and {tj} ⊂ R such that

inf
u∈M(µ)

‖ψ(0)j − u‖H1 → 0 as j →∞, (5.1)

but the corresponding solution (ψj) satis�es

inf
u∈M(µ)

‖ψ(tj , ·)− u(·)‖H1 ≥ ε0. (5.2)

For simplicity, we write uj = ψj(tj , ·). Then by the charge conservation law and from (5.1),

there exists uµ ∈ B(µ) such that

‖uj‖22 = ‖ψ(0)j‖22 → ‖uµ‖22 = µ. (5.3)

By the energy conservation law, we also have

E
(
uj
)

= E
(
ψ(0)j

)
=

1

2

∫
R3

|∇ψ(0)j |2 dx+ e2A1(ψ(0)j) + 2e2A2(ψ(0)j) + e2A0 −
1

p+ 1

∫
R3

|ψ(0)j |p+1 dx.

From (5.1), one gets

E
(
uj
)
→ E(uµ) = C

(
µ
)
. (5.4)

Then from (5.3), (5.4) and by Lemma 3.8, there exists {yj} ⊂ R3 such that uj(·)−uµ(·+yj)→ 0

in H1(R3), in contradiction with (5.2). This ends the proof of Theorem 1.2. �

6. The case ρ is a characteristic function

In this section, we consider the case where the doping pro�le ρ is a characteristic function,

which appears frequently in physical literatures [21, 25, 27]. More precisely, let {Ωi}mi=1 ⊂ R3

be disjoint bounded open sets with smooth boundary. For αi ∈ R (i = 1, · · · ,m), we assume

that the doping pro�le ρ has the form:

ρ(x) =

m∑
i=1

αiχΩi(x), χΩi(x) =

{
1 (x ∈ Ωi),

0 (x /∈ Ωi).
(6.1)

In this case, ρ cannot be weakly di�erentiable so that the assumption ‖x · ∇ρ‖ 6
5
≤ ρ0 does not

make sense. Even so, we are able to obtain the existence of stable standing waves by imposing

some smallness condition related with Ωi.

To state our main result for this case, let us put L := sup
x∈∂Ω

|x| < ∞. A key is the following

sharp boundary trace inequality due to [1, Theorem 6.1], which we present here according to

the form used in this paper.
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Proposition 6.1. Let Ω ⊂ R3 be a bounded domain with smooth boundary and γ : H1(Ω) →
L2(∂Ω) be the trace operator. Then it holds that∫
∂Ω
|γ(u)|2 dS ≤ κ1(Ω)

∫
Ω
|u|2 dx+κ2(Ω)

(∫
Ω
|u|2 dx

) 1
2
(∫

Ω
|∇u|2 dx

) 1
2

for any u ∈ H1(Ω),

where κ1(Ω) = |∂Ω|
|Ω| , κ2(Ω) =

∥∥|∇w|∥∥
L∞(∂Ω)

and w is a unique solution of the torsion problem:

∆w = κ1(Ω) in Ω,
∂w

∂n
= 1 on ∂Ω.

In relation to the size of ρ, we de�ne

D(Ω) := L|Ω|
1
6 |∂Ω|

1
2

(
κ1(Ω)|Ω|

1
3 + κ2(Ω)

) 1
2
.

Remark 6.2. It is known that κ2(Ω) ≥ 1; see [1]. Then by the isoperimetric inequality in R3:

|∂Ω| ≥ 3|Ω|
2
3 |B1|

1
3 ,

and the fact |Ω| ≤ |BL(0)| = L3|B1|, we �nd that

D(Ω) ≥
(
|Ω|
|B1|

) 1
3

|Ω|
1
6 ·
√

3|Ω|
1
3 |B1|

1
6

(
3|B1|

1
3 + 1

) 1
2

= C|Ω|
5
6 = C‖χΩ‖

L
6
5 (R3)

, (6.2)

where C is a positive constant independent of Ω.

Under these preparations, we have the following result.

Theorem 6.3. Under the assumption (6.1), we have the followings.

(i) Suppose that 2 < p < 7
3 and choose µ > 0 so that c∞(µ) < 0. Then there exists

ρ0 = ρ0(e, µ) > 0 such that if

m∑
i=1

|αi|D(Ωi) ≤ ρ0, the minimization problem (1.5)

admits a minimizer uµ.

Moreover the associated Lagrange multiplier ω = ω(µ) is positive.

(ii) Suppose that 1 < p ≤ 2. Then there exists e0 = e0(µ, ρ) > 0 such that if 0 < e ≤ e0, the

minimization problem (1.5) admits a minimizer uµ.

Similarly to Theorem 1.2, the orbital stability of eiωtuµ(x) also holds true.

We mention that the �rst part x · ∇ρ(x) appeared was the de�nition of A3(u) and A4 in

Subsection 2.3. Under the assumption (6.1), we replace them by

A3(u) := −1

2

m∑
i=1

αi

∫
∂Ωi

S1(u)x · ni dSi,

A4 := −1

2

m∑
i=1

αi

∫
∂Ωi

S2x · ni dSi,

where ni is the unit outward normal on ∂Ωi. Indeed we have the following.

Lemma 6.4. Let Ω ⊂ R3 be a bounded domain with smooth boundary. Then it holds that

d

dτ

∫
R3

S1(u)(x)χΩ

(x
τ

)
dx

∣∣∣∣
τ=1

=

∫
∂Ω
S1(u)x · ndS.
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Proof. The proof is based on the domain deformation as in [30]. In fact, one has

d

dτ

∫
R3

S1(u)(x)χΩ

(x
τ

)
dx

∣∣∣∣
τ=1

=
d

dτ

∫
τΩ
S1(u) dx

∣∣∣∣
τ=1

= lim
h→0

1

h

(∫
(1+h)Ω

S1(u) dx−
∫

Ω
S1(u) dx

)

= lim
h→0

1

h

∫
(1+h)Ω\Ω

S1(u) dx

= lim
h→0

1

h

∫ 1+h

1

(∫
∂(tΩ)

S1(u)x · n∂(tΩ) dS

)
dt

=

∫
∂Ω
S1(u)x · ndS,

from which we conclude. �

By Lemma 6.4, the Pohozev identity can be reformulated as follows.

Lemma 6.5. Under the assumption (6.1), any nontrivial solution u of (1.1) satis�es the fol-

lowing identity.

0 =
1

2
‖∇u‖22 +

3ω

2
‖u‖22 −

3

p+ 1
‖u‖p+1

p+1 + 5e2A(u) +
e2

2

m∑
i=1

αi

∫
∂Ωi

S(u)x · ni dSi,

(5p− 7)E(u) = 2(p− 2)‖∇u‖22 −
(3p− 5)ω

2
‖u‖22

− e2
m∑
i=1

αi

(
2

∫
Ωi

S(u) dx− 3− p
2

∫
∂Ωi

S(u)x · ni dSi
)
.

Proof. As we have seen in Subsection 2.5, the Pohozaev identity can be obtained by considering
d
dλI(uλ)|λ=1 with uλ(x) = u

(
x
λ

)
. Applying Lemma 6.4 with τ = λ−1, we then obtain

0 =
1

2
‖∇u‖22 +

3ω

2
‖u‖22 −

3

p+ 1
‖u‖p+1

p+1 + 5e2A(u) +
e2

2

m∑
i=1

αi

∫
∂Ωi

S(u)x · ni dSi

− 5e2A0 −
e2

2

m∑
i=1

αi

∫
∂Ωi

S2x · ni dSi.

Now recalling that

A0 = −1

4

∫
R3

S2ρ(x) dx = −1

4

m∑
i=1

αi

∫
Ωi

S2 dx,

S2(x) = − 1

8π

∫
R3

ρ(y)

|x− y|
dy = − 1

8π

m∑
i=1

αi

∫
Ωi

1

|x− y|
dy,

one �nds that ∫
Ωi

x · ∇S2 dx =
1

8π

m∑
i=1

αi

∫
Ωi

∫
Ωi

x · (x− y)

|x− y|3
dy dx

=
1

8π

m∑
i=1

αi

∫
Ωi

∫
Ωi

(
1

|x− y|
+
y · (x− y)

|x− y|3

)
dy dx

= −
∫

Ωi

S2 dx−
∫

Ωi

x · ∇S2 dx,
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and hence ∫
Ωi

x · ∇S2 dx = −1

2

∫
Ωi

S2 dx.

Here we used the Fubini theorem. Thus by the divergence theorem, we get

−5e2A0 −
e2

2

m∑
i=1

αi

∫
∂Ωi

S2x · ni dSi =
5e2

4

m∑
i=1

αi

∫
Ωi

S2 dx−
e2

2

m∑
i=1

αi

∫
Ωi

div(xS2) dx

= −e
2

4

m∑
i=1

αi

∫
Ωi

S2 dx−
e2

2

m∑
i=1

αi

∫
Ωi

x · ∇S2 dx = 0.

This completes the proof of the Pohozaev identity. Then similarly to Lemma 2.3, we can show

the second identity. �

Next we establish estimates for A0, A2, A3 and A4.

Lemma 6.6. For any u ∈ H1(R3,C), A2 and A3 satisfy the estimates:

|A2(u)| ≤ C
m∑
i=1

|αi||Ωi|
5
6 ‖u‖

3
2
2 ‖∇u‖

1
2
2 ,

|A3(u)| ≤ C
m∑
i=1

|αi|D(Ωi)‖u‖
3
2
2 ‖∇u‖

1
2
2 ,

where C > 0 is a constant independent of Ωi.

Moreover the constants A0 and A4 can be estimated as follows:

|A0| ≤ C

(
m∑
i=1

|αi||Ωi|
5
6

)2

,

|A4| ≤ C

(
m∑
i=1

|αi|D(Ωi)

)2

.

Proof. First we observe that

|A2(u)| ≤ 1

4

m∑
i=1

|αi|
∫

Ωi

|S1(u)| dx,

from which the estimate for A2 can be obtained by the Hölder inequality and Lemma 2.1. Next

by Proposition 6.1, the Hölder inequality and the Sobolev inequality, one has

|A3(u)| ≤ 1

2

m∑
i=1

|αi|
∫
∂Ωi

|S1(u)||x| dSi

≤ 1

2

m∑
i=1

|αi|
(∫

∂Ωi

|S1(u)|2 dSi
) 1

2
(∫

∂Ωi

|x|2 dSi
) 1

2

≤ 1

2

m∑
i=1

|αi|Li|∂Ωi|
1
2

(
κ1(Ωi)‖S1(u)‖2L2(Ωi)

+ κ2(Ωi)‖S1(u)‖L2(Ωi)‖∇S1(u)‖L2(Ωi)

) 1
2

≤ 1

2

m∑
i=1

|αi|Li|∂Ωi|
1
2

(
κ1(Ωi)|Ωi|

2
3 ‖S1(u)‖2L6(R3) + κ2(Ωi)|Ωi|

1
3 ‖S1(u)‖L6(R3)‖∇S1(u)‖L2(R3)

) 1
2

≤ C
m∑
i=1

|αi|Li|Ωi|
1
6 |∂Ωi|

1
2

(
κ1(Ωi)|Ωi|

1
3 + κ2(Ωi)

) 1
2 ‖∇S1(u)‖L2(R3)

≤ C
m∑
i=1

|αi|D(Ωi)‖u‖
3
2
2 ‖∇u‖

1
2
2 .
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The estimates for A0 and A4 can be shown similarly. �

Now we are ready to prove Theorem 6.3.

Proof of Theorem 6.3. We establish the existence of a minimizer for 2 < p < 7
3 . For this

purpose, it su�ces to modify the proof of Lemma 3.4 only, because the other part of the

existence proof does not rely on x ·∇ρ(x). Under the same notation as the proof of Lemma 3.4

and applying Lemma 6.4, we arrive at

f ′(1) =
p− 1 + (3p− 7)b

2
E(u)− p− 1 + (3p− 7)b

4
‖∇u‖22 +

1

2

(
3− p+ (5− 3p)b

)
e2A1(u)

−
(
p− 1 + (3p+ 1)b

)
e2A2(u) + be2A3(u).

Furthermore we choose b = 1 and use (6.2). By Lemma 6.6, it follows that

f ′(1) ≤ 2(p− 2)E(u)− (p− 2)‖∇u‖22

+ Ce2
m∑
i=1

|αi||Ωi|
5
6 ‖u‖

3
2
2 ‖∇u‖

1
2
2 + Ce2

m∑
i=1

|αi|D(Ωi)‖u‖
3
2
2 ‖∇u‖

1
2
2

≤ 2(p− 2)E(u) + Ce
8
3µ

(
m∑
i=1

|αi|D(Ωi)

) 4
3

.

Then similarly to Lemma 3.4, there exists ρ0 > 0 such that

m∑
i=1

|αi|D(Ωi) ≤ ρ0 ⇒ f ′(1) < 0,

from which we can conclude.

We can also show the other parts of Theorem 6.3 by modifying the proof of Lemma 3.7 and

Lemma 3.10 in a similar way. �

7. Concluding remark and an open problem

In this paper, the nonlinear Schrödinger-Poisson system with a doping pro�le has been in-

vestigated. By establishing the existence of L2-constraint minimizers when

c∞(µ) < 0 and ‖ρ‖ 6
5

+ ‖x · ∇ρ‖ 6
5
� 1 for 2 < p <

7

3
, or e� 1 for 1 < p ≤ 2,

we are able to obtain stable standing waves. The presence of a doping pro�le ρ causes a di�culty

of proving the strict sub-additivity which is the key of the existence and the stability of standing

waves. This paper concludes by providing one open problem.

Problem: Non-existence of minimizers for large ρ ?

We have shown the existence of minimizers when ρ is small, but don't know what happens

if ρ is large. In 1D case, it was shown in [16] that no minimizer exists in the case µ < ‖ρ‖L1(R),

which was referred to the supercritical case. (Note that [16] deals with the Schrödinger-Poisson

system with ∆φ = 1
2(|u|2 − ρ(x)) so that the sign in the front of A(u) in (1.4) is opposite.)

Hence a natural question is whether a similar result holds for the 3D problem.

To explain the idea in [16], let us consider the problem in RN and denote by G(x) the

fundamental solution of −∆ on RN . Under the assumption ρ ≥ 0 and ρ ∈ L1(RN ), the
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nonlocal term A(u) can be expressed as follows.

A(u) =
1

8

∫
R3

∫
R3

G(x− y)
(
|u(x)|2 − ρ(x)

)(
|u(y)|2 − ρ(y)

)
dx dy

=
1

8

∫
R3

∫
R3

G(x− y)|u(x)|2(u(y)|2 dx dy − 1

4

∫
R3

∫
R3

G(x− y)|u(x)|2ρ(y) dx dy +A0

=
1

8

∫
R3

∫
R3

(
G(x− y)−G(x)−G(y)

)
|u(x)|2|u(y)|2 dx dy

+
1

4

(
‖u‖2L2(RN ) − ‖ρ‖L1(RN )

) ∫
R3

G(x)|u(x)|2 dx

− 1

4

∫
R3

∫
R3

(
G(x− y)−G(x)

)
|u(x)|2ρ(y) dx dy +A0.

Here we have used Fubini's theorem and wrote A0 = 1
8

∫
R3

∫
R3 G(x − y)ρ(x)ρ(y) dx dy. Thus

one has c(µ) = −∞ if we could show that there is a family {uλ} ⊂ H1(RN ) satisfying

‖uλ‖2L2(RN ) = µ, ‖∇uλ‖L2(RN ) ≤ C, (7.1)∣∣∣∣∫
R3

∫
R3

(
G(x− y)−G(x)−G(y)

)
|uλ(x)|2|uλ(y)|2 dx dy

∣∣∣∣ ≤ C,∣∣∣∣∫
R3

∫
R3

(
G(x− y)−G(x)

)
|uλ(x)|2ρ(y) dx dy

∣∣∣∣ ≤ C,
but

∫
R3

G(x)|uλ(x)|2 dx→∞ as λ→∞, (7.2)

where C > 0 is a constant independent of λ.

When N = 1, it follows that G(x) = 1
2 |x| and {uλ} can be constructed by considering

a function whose mass is supported near the origin and in�nity. (See [16, Example 4.1 and

Remark 4.6].) However in the 3D case, which yields G(x) = 1
4π|x| , it cannot happen that both

(7.1) and (7.2) are ful�lled. Indeed by the Hardy inequality, we have∫
R3

G(x)|u(x)|2 dx =
1

4π

∫
R3

|u(x)|2

|x|
dx ≤ 1

4π

(∫
R3

|u(x)|2

|x|2
dx

) 1
2
(∫

R3

|u(x)|2 dx
) 1

2

≤ C‖∇u‖L2(RN )‖u‖L2(RN ).

Moreover as we have shown in Lemma 3.1, the energy functional on R3 is always bounded from

below, regardless of the size of ρ. Therefore the only possibility for the non-existence is that

the strict sub-additivity does not hold when µ < ‖ρ‖L1(RN ). Moreover as we have observed in

this paper, in the 3D problem, it is rather natural to measure the size of ρ by L
6
5 -norm, which

makes us to conjecture that the non-existence result may be obtained if ‖ρ‖ 6
5
is large.
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