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Abstract. This paper is devoted to the study of the nonlinear Schrödinger-Poisson system

with a doping pro�le. We are interested in the existence of ground state solutions by consid-

ering the minimization problem on a Nehari-Pohozaev set. The presence of a doping pro�le

causes several di�culties, especially in the proof of the uniqueness of a maximum point of a

�bering map. A key ingredient is to establish the energy inequality inspired by [30]. We also

establish the relation between ground state solutions and L2-constraint minimizers obtained

in [16]. When the doping pro�le is a characteristic function supported on a bounded smooth

domain, some geometric quantities related to the domain, such as the mean curvature, are

responsible for the existence of ground state solutions.

1. Introduction

In this paper, we are concerned with the following nonlinear Schrödinger-Poisson system:{
−∆u+ ωu+ eφu = |u|p−1u

−∆φ = e
2

(
|u|2 − ρ(x)

) in R3, (1.1) eq:1.1

where ω > 0, e > 0 and 1 < p < 5. Equation (1.1) appears as a stationary problem for the

time-dependent nonlinear Schrödinger-Poisson system:
iψt + ∆ψ − eφψ + |ψ|p−1ψ = 0 in R+ × R3,

−∆φ = e
2

(
|ψ|2 − ρ(x)

)
in R+ × R3,

ψ(0, x) = ψ0.

(1.2) eq:1.2

Indeed when we look for a standing wave of the form: ψ(t, x) = eiωtu(x), we are led to the

elliptic problem (1.1). In this paper, we are interested in the existence of ground state solutions

of (1.1) and their relation with L2-constraint minimizers obtained in [16].

The Schrödinger-Poisson system appears in various �elds of physics, such as quantum me-

chanics, black holes in gravitation and plasma physics. Especially, the Schrödinger-Poisson

system plays an important role in the study of semi-conductor theory; see [22, 26, 28], and then

the function ρ(x) is referred as impurities or a doping pro�le. The doping pro�le comes from the

di�erence of the number densities of positively charged donor ions and negatively charged accep-

tor ions, and the most typical examples are characteristic functions, step functions or Gaussian

functions. Equation (1.1) also appears as a stationary problem for the Maxwell-Schrödinger

system. We refer to [6, 13, 14] for the physical background and the stability result of standing

waves for the Maxwell-Schrödinger system. In this case, the constant e describes the strength

of the interaction between a particle and an external electromagnetic �eld.
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The nonlinear Schrödinger-Poisson system with ρ ≡ 0:{
−∆u+ ωu+ eφu = |u|p−1u

−∆φ = e
2 |u|

2
in R3 (1.3) eq:1.3

has been studied widely in the last two decades. Especially, the existence of non-trivial solutions

and ground state solutions of (1.3) has been considered in detail. Furthermore, the existence of

associated L2-constraint minimizers depending on p and the size of the mass and their stability

have been investigated as well. We refer to e.g. [3, 4, 5, 11, 13, 21, 23, 25, 27, 31, 32, 35]

and references therein. On the other hand, the nonlinear Schrödinger-Poisson system with a

doping pro�le is less studied. In [17, 18], the corresponding 1D problem has been considered.

Moreover, the linear Schrödinger-Poisson system (that is, the problem (1.1) without |u|p−1u)

with a doping pro�le in R3 has been studied in [7, 8]. In [16], the authors have investigated the

existence of stable standing waves for (1.2) by considering the corresponding L2-minimization

problem. As far as we known, there is no literature concerning with the existence of ground

state solutions of (1.1), which is exactly the purpose of this paper.

To state our main results, let us give some notation. For u ∈ H1(R3,C), the energy functional

associated with (1.1) is given by

I(u) =
1

2

∫
R3

|∇u|2 dx+
ω

2

∫
R3

|u|2 dx− 1

p+ 1

∫
R3

|u|p+1 dx+ e2A(u). (1.4) eq:1.4

Here we denote the nonlocal term by S(u) = S0(u) + S1 with

S0(u)(x) := (−∆)−1

(
|u(x)|2

2

)
=

1

8π|x|
∗ |u(x)|2,

S1(x) := (−∆)−1

(
−ρ(x)

2

)
= − 1

8π|x|
∗ ρ(x),

and the functional corresponding to the nonlocal term by

A(u) :=
1

4

∫
R3

S(u)
(
|u|2 − ρ(x)

)
dx =

1

32π

∫
R3

∫
R3

(
|u(x)|2 − ρ(x)

)(
|u(y)|2 − ρ(y)

)
|x− y|

dx dy.

A function u0 is said to be a ground state solution (GSS) of (1.1) if u0 has a least energy among

all nontrivial solutions of (1.1), namely u0 satis�es

I(u0) = inf{I(u) | u ∈ H1(R3,C), I ′(u) = 0}.

For the doping pro�le ρ, we assume that

ρ(x) ∈ L
6
5 (R3)∩Lqloc(R

3) for some q > 3, x·∇ρ(x) ∈ L
6
5 (R3), x·(D2ρ(x)x) ∈ L

6
5 (R3), (1.5) eq:1.5

where D2ρ is the Hessian matrix of ρ, and

ρ(x) ≥ 0, 6≡ 0 for x ∈ R3. (1.6) eq:1.6

Typical examples are the Gaussian function ρ(x) = εe−α|x|
2
and ρ(x) = ε

1+α|x|r for r > 5
2 .

In this setting, our �rst main result can be expressed as follows.

thm:1.1 Theorem 1.1. Suppose that 2 < p < 5 and assume (1.5)-(1.6). There exists ρ0 independent of

e, ρ such that if

e2
(
‖ρ‖

L
6
5 (R3)

+ ‖x · ∇ρ‖
L

6
5 (R3)

+ ‖x · (D2ρx)‖
L

6
5 (R3)

)
≤ ρ0,

then (1.1) has a ground state solution u0. Moreover any ground state solution of (1.1) is

real-valued up to phase shift.



SCHRÖDINGER-POISSON SYSTEM WITH A DOPING PROFILE 3

When 1 < p < 2, we are able to obtain the existence of a radial ground state solution of

(1.1), which is a weak result; see Section 6 below.

Our second purpose of this paper is to investigate the relation between the ground state

solution of (1.1) obtained in Theorem 1.1 and the L2-constraint minimizer in [16]. There has

been signi�cant progress in this relationship in recent years; see [15, 19, 21] for this direction.

Based on the terminology in [15, 19], we call u0 obtained in Theorem 1.1 an action ground state

solution of (1.1).

To state our second main result, we de�ne the energy functional E : H1(R3,C)→ R by

E(u) =
1

2

∫
R3

|∇u|2 dx− 1

p+ 1

∫
R3

|u|p+1 dx+ e2A(u).

For µ > 0, let us consider the minimization problem:

C(µ) = inf
u∈B(µ)

E(u), (1.7) eq:1.7

where B(µ) = {u ∈ H1(R3,C) | ‖u‖2L2(R3) = µ}. In this setting, the constant ω in (1.1) appears

as a Lagrange multiplier. We also de�ne the energy associated with (1.3):

E∞(u) :=
1

2
‖∇u‖22 −

1

p+ 1

∫
R3

|u|p+1 dx+
e2

4

∫
R3

S0(u)|u|2 dx.

Indeed if we assume ρ(x)→ 0 as |x| → ∞, (1.3) can be seen as a problem at in�nity. We de�ne

the minimum energy associated with (1.3) by

ce,∞(µ) = c∞(µ) := inf
u∈B(µ)

E∞(u). (1.8) eq:1.8

The existence of minimizers for ce,∞(µ) has been studied widely; we refer to [4, 5, 13, 11]

and references therein. Especially in the case 2 < p < 7
3 , ce,∞(µ) is attained if and only if

ce,∞(µ) < 0. Moreover ce,∞(µ) < 0 when µ is large for �xed e or e is small for �xed µ.

In [16], it was shown that if 2 < p < 7
3 and c∞(µ) < 0, there exists ρ0 = ρ0(e, µ) > 0 such

that if ‖ρ‖
L

6
5 (R3)

+ ‖x ·∇ρ‖
L

6
5 (R3)

≤ ρ0, the minimization problem (1.7) admits a minimizer uµ

and the associated Lagrange multiplier ω = ω(µ) is positive.

As in [15, 19], we call uµ an energy ground state solution of (1.1). Our second main result of

this paper is the following.

thm:1.2 Theorem 1.2. Let µ > 0 be given so that c∞(µ) < 0 and suppose that 2 < p < 7
3 . Under the

assumptions in Theorem 1.1, the following properties hold.

(i) The energy ground state solution uµ is an action ground state solution of (1.1) with ω = ωµ.

(ii) Let Ω(µ) be the set of Lagrange multipliers associated with energy ground state solutions for

Bµ, namely

Ω(µ) := { ωµ > 0 | ωµ is the Lagrange multiplier associated with an energy ground state

of (1.1) under the constraint Bµ } ,

and wµ be an action ground state solution of (1.1) with ω = ωµ. Then wµ is an energy ground

state solution of (1.1) under the constraint Bµ.

We emphasize that up to authors' knowledge, Theorem 1.2 is new even for the case ρ ≡ 0.

(See also Remark 5.3 below.)

The assumption (1.5) rules out the case ρ is a characteristic function supported on a bounded

smooth domain. Even in this case, we are still able to obtain the existence of ground state

solutions and their relation under a smallness condition on some geometric quantities related

to the domain; See Section 7.
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Here we brie�y explain our strategy and its di�culty. For the existence of a ground state

solution of (1.1), we adapt a strategy in [3, 27], that is, we aim to obtain a ground state

solution as a minimizer of the Nehari-Pohozaev constraint 0 = J(u) = N(u) − 2P (u), where

N(u) = 0 is the Nehari identity and P (u) = 0 is the Pohozaev identity for (1.1). It is standard

to show that for any u ∈ H1(R3,C), there exists t = tu > 0 such that J(ut) = 0 provided that

ut(x) = t2u(tx). A crucial point is then to show that tu is unique. In [27] for the case ρ ≡ 0,

this was carried out by considering up to third derivatives of the �bering map, which requires

an assumption involving third derivative of ρ in our case. To avoid this di�culty, we follows

the idea in [30] to establish the following energy inequality :

I(u)− I(ut) ≥
1− t3

3
J(u) +

(1− t)2ω

3
‖u‖22 +

α

6(p+ 1)
(1− t)2‖u‖p+1

p+1

− β(1− t)2e2
(
‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5
+ ‖x · (D2ρx)‖ 6

5

) (
‖u‖22 + ‖u‖2p+1

)
(1.9) eq:1.9

for any u ∈ H1(R3,C), 0 ≤ t ≤ T and some T , α, β > 0. This key inequality is enough to

prove the uniqueness of tu for u ∈ H1(R3,C) with J(u) ≤ 0. Moreover we can apply the energy

inequality to show the relation between two types of ground state solutions of (1.1).

As we can easily imagine, if a doping pro�le ρ is considered, scaling arguments do not work

straightforwardly because of the loss of spatial homogeneity. Furthermore the presence of the

doping pro�le ρ satisfying (1.5) and (1.6) causes additional di�culties. Firstly we cannot expect

that a remainder term in (1.9) is zero. Secondly we are not able to use the concentration function

as in [3]. See Remark 3.8 and Remark 4.3 for details.

Compared to [16], we impose two additional assumptions on ρ. One is (1.6) which guarantees

that the least energy for (1.1) is strictly less than that of (1.3), that is,

m < m∞.

This property appears naturally when we apply the concentration compactness principle. Sec-

ond additional assumption is the L
6
5 -integrability of x · (D2ρx). Unlike the existence of min-

imizers, we need detailed geometric properties of the functional I. Especially we apply the

second-order Taylor expansion to obtain (1.9), causing that some estimate for x · (D2ρx) is

required.

When ρ is a characteristic function, further consideration is required because ρ cannot be

weakly di�erentiable. In this case, a key of the proof is the sharp boundary trace inequality which

was developed in [2], and a variation of domain related with the calculus of moving surfaces

due to Hadamard [20]. Then by imposing a smallness condition of some geometric quantities

related to the support of ρ, we are able to obtain the existence of ground state solutions.

This paper is organized as follows. In Section 2, we introduce several properties of the energy

functional and some lemmas which will be used later on. We investigate basic properties of

the Nehari-Pohozaev set in Section 3. In Section 4, we prove the existence of a ground state

solution of (1.1) by applying the concentration compactness principle and completes the proof

of Theorem 1.1. Section 5 is devoted to the relation between action ground state solutions and

energy ground state solutions. We also study the case 1 < p < 2 in Section 6. In Section 7, we

�nish this paper by considering the case ρ is a characteristic function and present the existence

of ground state solutions and their relation for this case.

Hereafter in this paper, unless otherwise speci�ed, we write ‖u‖Lp(R3) = ‖u‖p. We also set

‖u‖2 := ‖∇u‖22 + ‖u‖22.
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2. Variational formulation and preliminaries

The aim of this section is to prepare several properties of the energy functional and present

intermediate lemmas which will be used later on.

2.1. Decomposition of the energy.
In this subsection, we rewrite the energy functional I in a more convenient way. We put

A(u) = ‖∇u‖22, B(u) = ‖u‖22, C(u) = ‖u‖p+1
p+1,

and decompose I in the following way:

I(u) =
1

2
A(u) +

ω

2
B(u)− 1

p+ 1
C(u)

+
e2

4

∫
R3

S0(u)|u|2 dx+
e2

4

∫
R3

S1|u|2 dx−
e2

4

∫
R3

S0(u)ρ(x) dx− e2

4

∫
R3

S1ρ(x) dx.

Next we de�ne three nonlocal terms:

D(u) =
1

4

∫
R3

S0(u)|u|2 dx, (2.1) eq:2.1

E1(u) = −1

4

∫
R3

S0(u)ρ(x) dx = − 1

32π

∫
R3

∫
R3

|u(y)|2ρ(x)

|x− y|
dx dy =

1

4

∫
R3

S1|u|2 dx, (2.2) eq:2.2

F = −1

4

∫
R3

S1ρ(x) dx.

Note that F is independent of u ∈ H1(R3,C). Then we are able to write I de�ned in (1.4) in

the following form:

I(u) =
1

2
A(u) +

ω

2
B(u)− 1

p+ 1
C(u) + e2D(u) + 2e2E1(u) + e2F.

Now it is convenient to de�ne I(u) := I(u)− e2F , which yields that

I(u) =
1

2
A(u) +

ω

2
B(u)− 1

p+ 1
C(u) + e2D(u) + 2e2E1(u). (2.3) eq:2.3

Since F is independent of u, we have only to consider the existence of nontrivial critical point

of I. Recalling that

S0(u)(x) = (−∆)−1

(
|u(x)|2

2

)
≥ 0,

we �nd that

A(u), B(u), C(u), D(u) ≥ 0 for all u ∈ H1(R3,C). (2.4) eq:2.4

For later use, let us also de�ne

E2(u) :=
1

2

∫
R3

S0(u)x · ∇ρ(x) dx =
1

2

∫
R3

S2|u|2 dx, (2.5) eq:2.5

E3(u) :=
1

2

∫
R3

S0(u)x · (D2ρ(x)x) dx =
1

2

∫
R3

S3|u|2 dx,

S2(x) = (−∆)−1

(
x · ∇ρ(x)

2

)
=

1

8π|x|
∗
(
x · ∇ρ(x)

)
,

S3(x) = (−∆)−1

(
x · (D2ρ(x)x)

2

)
=

1

8π|x|
∗
(
x · (D2ρ(x)x)

)
,

which is well-de�ned for u ∈ H1(R3,C) by (1.5).
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2.2. Derivatives of nonlocal terms.
We next investigate Frechlet derivatives of D, E1 and E2 which will be needed later.

lem:2.1 Lemma 2.1. (i) For ϕ ∈ H1(R3,C), it holds that

D′(u)ϕ =

∫
R3

S0(u)uϕ̄ dx,

E′1(u)ϕ =
1

2

∫
R3

S1uϕ̄ dx,

E′2(u)ϕ =

∫
R3

S2uϕ̄dx.

Especially we have

D′(u)u =

∫
R3

S0(u)|u|2 dx = 4D(u),

E′1(u)u =
1

2

∫
R3

S1|u|2 dx = −1

2

∫
R3

S0(u)ρ(x) dx = 2E1(u),

E′2(u)u =

∫
R3

S2|u|2 dx =

∫
R3

S0(u)x · ∇ρ(x) dx = 2E2(u).

(ii) It follows that

lim
R→∞

∫
BR(0)

S0(u)ux · ∇ū dx = −5

4

∫
R3

S0(u)|u|2 dx = −5D(u),

lim
R→∞

∫
BR(0)

S1(u)ux · ∇ū dx =
5

2

∫
R3

S0(u)ρ(x) dx+
1

2

∫
R3

S0(u)x · ∇ρ(x) dx

= −10E1(u) + E2(u),

lim
R→∞

∫
BR(0)

S2(u)ux · ∇ū dx = −3

∫
R3

S0(u)x · ∇ρ(x) dx− 1

2

∫
R3

S0(u)x · (D2ρ(x)x) dx

= −6E2(u)− E3(u).

Proof. (i) We observe from (2.1) that

D′(u)ϕ =
1

4

∫
R3

S′0(u)ϕ|u|2 dx+
1

2

∫
R3

S0(u)uϕ̄ dx

=
1

16π

∫
R3

∫
R3

u(y)ϕ(y)|u(x)|2

|x− y|
dy dx+

1

2

∫
R3

S0(u)uϕ̄ dx

=
1

2

∫
R3

S0(u)uϕ̄ dx+
1

2

∫
R3

S0(u)uϕ̄ dx =

∫
R3

S0(u)uϕ̄ dx.

The derivatives of E1 and E2 can be derived readily by (2.2) and (2.5).

(ii) By the divergence theorem and the fact S0(u)|u|2 ∈ L1(R3), arguing as in [9, 12], one has

lim
R→∞

∫
BR(0)

S0(u)ux · ∇ū dx

= lim
R→∞

{
1

2

∫
∂BR(0)

S0(u)|u|2x · ndS − 3

2

∫
BR(0)

S0(u)|u|2 dx− 1

2

∫
BR(0)

|u|2x · ∇S0(u) dx

}

= −3

2

∫
R3

S0(u)|u|2 dx− 1

2

∫
R3

|u|2x · ∇S0(u) dx.

Using

−∆S0(u) =
1

2
|u|2 and

∫
R3

|∇S0(u)|2 dx =
1

2

∫
R3

S0(u)|u|2 dx,
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we �nd that

1

2

∫
R3

|u|2x · ∇S0(u) dx =

∫
R3

∇S0(u) · ∇
(
x · ∇S0(u)

)
dx

=

∫
R3

|∇S0(u)|2 dx+

∫
R3

∇S0(u) ·
(
D2S0(u)x

)
dx

=

∫
R3

|∇S0(u)|2 dx−
∫
R3

S0(u)∆S0(u) dx−
∫
R3

S0(u)x · ∇
(
∆S0(u)

)
dx

=

∫
R3

|∇S0(u)|2 dx+
1

2

∫
R3

S0(u)|u|2 dx+
1

2

∫
R3

S0(u)x · ∇|u|2 dx

= −1

2

∫
R3

S0(u)|u|2 dx− 1

2

∫
R3

|u|2x · ∇S0(u) dx.

This implies that ∫
R3

|u|2x · ∇S0(u) dx = −1

2

∫
R3

S0(u)|u|2 dx

and hence

lim
R→∞

∫
BR(0)

S0(u)ux · ∇ū dx = −5

4

∫
R3

S0(u)|u|2 dx.

Next since ∆S1 = ρ
2 , it holds that

1

2

∫
R3

|u|2x · ∇S1 dx =

∫
R3

∇S0(u) · ∇(x · ∇S1) dx

= −
∫
R3

S0(u)ρ(x) dx− 1

2

∫
R3

S0(u)x · ∇ρ(x) dx,

yielding that

lim
R→∞

∫
BR(0)

S1(u)ux · ∇ū dx = −3

2

∫
R3

S1|u|2 dx−
1

2

∫
R3

|u|2x · ∇S1 dx

=
5

2

∫
R3

S0(u)ρ(x) dx+
1

2

∫
R3

S0(u)x · ∇ρ(x) dx.

Similarly from ∆S2 = −x·∇ρ
2 , we obtain

1

2

∫
R3

|u|2x · ∇S2 dx =
3

2

∫
R3

S0(u)x · ∇ρ(x) dx+
1

2

∫
R3

S0(u)x · (D2ρ(x)x) dx,

and hence

lim
R→∞

∫
BR(0)

S2(u)ux · ∇ū dx =

∫
R3

S2ux · ∇ū dx = −3

2

∫
R3

S2|u|2 dx−
1

2

∫
R3

|u|2x · ∇S2 dx

= −3

∫
R3

S0(u)x · ∇ρ(x) dx− 1

2

∫
R3

S0(u)x · (D2ρ(x)x) dx.

This completes the proof. �

2.3. Estimates of nonlocal terms.
This subsection is devoted to present estimates for the nonlocal terms.
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lem:2.2 Lemma 2.2. For any u ∈ H1(R3,C), S0, D, E1, E2 and E3 satisfy the estimates:

‖S0(u)‖6 ≤ C‖∇S0(u)‖2 ≤ C‖u‖212
5

≤ C‖u‖2,

‖∇S0(u)‖2 ≤ C‖u‖
5p−7
3(p−1)

2 ‖u‖
p+1

3(p−1)

p+1 ≤ C(‖u‖22 + ‖u‖2p+1) if 2 < p < 5,

D(u) ≤ C‖S0(u)‖6‖u‖212
5

≤ C‖u‖4,

|E1(u)| ≤ 1

4
‖S0(u)‖6‖ρ‖ 6

5
≤ C‖ρ‖ 6

5
‖u‖2,

|E2(u)| ≤ 1

2
‖S0(u)‖6‖x · ∇ρ‖ 6

5
≤ C‖x · ∇ρ‖ 6

5
‖u‖2,

|E3(u)| ≤ 1

2
‖S0(u)‖6‖x · (D2ρx)‖ 6

5
≤ C‖x · (D2ρx)‖ 6

5
‖u‖2.

For the proof of the inequality on S0(u), we refer to [27]. The other estimates can be obtained

by the Hödler inequality and the Sobolev inequality.

2.4. Convergence properties of nonlocal terms.
Next we introduce the Brezis-Lieb type convergence result for D(u).

lem:2.3 Lemma 2.3. Assume that un ⇀ u in H1(R3,C). Then it follows that

lim
n→∞

{D(un − u)−D(un) +D(u)} = 0.

Moreover if un → u in L
12
5 (R3), we also have

S0(un)→ S0(u) in L6(R3) and lim
n→∞

D(un) = D(u).

Proof. The proof can be found in [35, Lemma 2.2]. �

As for E1 and E2, we have the following compactness property, which follows from the

integrability of ρ and x · ∇ρ.

lem:2.4 Lemma 2.4. Assume that un ⇀ u in H1(R3,C). Then it follows that

lim
n→∞

E1(un) = E1(u) and lim
n→∞

E2(un) = E2(u).

Proof. First we observe that since un converges weakly in H1(R3,C), there exists C > 0 such

that ‖un‖ ≤ C. Moreover passing to a subsequence, we may assume that un → u in Lrloc(R3)

for 2 ≤ r < 6. Then similarly as Lemma 2.3, one can see that S0(un) → S0(u) in L6
loc(R3).

Furthermore since ρ ∈ L
6
5 (R3), for any ε > 0, there exists Rε > 0 such that(∫

|x|≥Rε
|ρ(x)|

6
5 dx

) 5
6

< ε.

Now from (2.2) and the Hölder inequality, it follows that

|E1(un)− E1(u)| ≤ 1

4

∫
R3

|S0(un)− S0(u)| |ρ| dx

=
1

4

∫
|x|≤Rε

|S0(un)− S0(u)| |ρ| dx+
1

4

∫
|x|≥Rε

|S0(un)− S0(u)| |ρ| dx

≤ 1

4

(∫
|x|≤Rε

|S0(un)− S0(u)|6 dx

) 1
6

‖ρ‖ 6
5

+
1

4
(‖S0(un)‖6 + ‖S0(u)‖6)

(∫
|x|≥Rε

|ρ(x)|
6
5 dx

) 5
6

.
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Thus by Lemma 2.2 and Lemma 2.3, we obtain

lim sup
n→∞

|E1(un)− E1(u)| ≤ 1

4
(C + ‖S0(u)‖6) ε.

Since ε is arbitrary, we deduce that E1(un) → E1(u) as n → ∞. E2(u) can be treated in a

similar manner. �

2.5. Scaling properties.
In this subsection, we collect scaling properties of the nonlocal terms D and E1. For a, b ∈ R

and t > 0, let us adapt the scaling ut(x) := tau(tbx). Then we have

S0(ut)(x) =
1

8π

∫
R3

|ut(y)|2

|x− y|
dy =

t2a

8π

∫
R3

|u(tby)|2

|x− y|
dy =

t2a+b

8π

∫
R3

|u(tby)|2

|tbx− tby|
dy

y=t−bz
=

t2a−2b

8π

∫
R3

|u(z)|2

|tbx− z|
dz.

Thus one �nds that

S0(ut)(x) = t2a−2bS0(u)(tbx),

D(ut) = t4a−5bD(u), (2.6) eq:2.6

E1(ut) = −1

4

∫
R3

S0(ut)(x)ρ(x) dx = − t
2a−2b

4

∫
R3

S0(u)(tbx)ρ(x) dx

= − t
2a−5b

4

∫
R3

S0(u)(x)ρ(t−bx) dx. (2.7) eq:2.7

By the Hölder inequality, it follows that

|E1(ut)| ≤
t2a−5b

4
‖S0(u)‖6‖ρ(t−b·)‖ 6

5
≤ Ct2a−

5
2
b‖ρ‖ 6

5
‖u‖2. (2.8) eq:2.8

2.6. Nehari and Pohozaev identities.
This subsection is devoted to establish the Nehari identity and the Pohozaev identity asso-

ciated with (1.1).

lem:2.5 Lemma 2.5. Let u ∈ H1(R3,C) be a weak solution of (1.1). Then u satis�es the Nehari

identity N(u) = 0 and the Pohozaev identity P (u) = 0, where

N(u) = A(u) + ωB(u)− C(u) + 4e2D(u) + 4e2E1(u), (2.9) eq:2.9

P (u) =
1

2
A(u) +

3ω

2
B(u)− 3

p+ 1
C(u) + 5e2D(u) + 10e2E1(u)− e2E2(u). (2.10) eq:2.10

Proof. First by Lemma 2.1 (i), one has

0 = I ′(u)u = ‖∇u‖22 + ω‖u‖22 − ‖u‖
p+1
p+1 + e2D′(u)u+ 2e2E′1(u)u

= A(u) + ωB(u)− C(u) + 4e2D(u) + 4e2E1(u).

Next by Lemma 2.1 (ii), formally it holds that

0 = I ′(u)x · ∇u = −1

2
‖∇u‖22 −

3ω

2
‖u‖22 +

3

p+ 1
‖u‖p+1

p+1 + e2D′(u)x · ∇u+ 2e2E′1(u)x · ∇u

= −1

2
A(u)− 3ω

2
B(u) +

3

p+ 1
C(u)− 5e2D(u)− 10e2E1(u) + e2E2(u).

A rigorous proof can be done by establishing the C1,α
loc -regularity of any weak solution of

(1.1) for some α ∈ (0, 1). Note that since ρ ∈ Lqloc(R
3) for some q > 3, it follows by the elliptic

regularity theory that S1 ∈W 2,q
loc (R3) ↪→ C1,α

loc (R3). The smoothness of u can be shown similarly

by applying the elliptic regularity theory. Then multiplying x · ∇ū and ex · ∇S(u) by (1.1)
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respectively, integrating them over BR(0) and passing to a limit R→∞, we are able to prove

(2.10) as in [9, 12]. �

3. Properties of Nehari-Pohozaev set

In this section, we investigate fundamental properties of a Nehari-Pohozaev set, which we

will use to obtain the existence of a ground state solution of (1.1).

Now let us de�ne

J(u) := 2N(u)− P (u).

From (2.9) and (2.10), it holds that

J(u) =
3

2
A(u) +

ω

2
B(u)− 2p− 1

p+ 1
C(u) + 3e2D(u)− 2e2E1(u) + e2E2(u). (3.1) eq:3.1

We also denote byM the Nehari-Pohozaev set:

M =
{
u ∈ H1(R3,C) \ {0} | J(u) = 0

}
.

By Lemma 2.5, one knows that any weak solution of (1.1) belongs to M. We will show later

that a minimizer I|M is actually a ground state solution of (1.1).

For this purpose, we begin with the following lemma. Hereafter we let

ut(x) := t2u(tx) for u ∈ H1(R3,C) \ {0} and t > 0.

lem:3.1 Lemma 3.1. Suppose that 2 < p < 5. For any u ∈ H1(R3,C) \ {0}, there exists tu > 0 such

that utu ∈M. Especially the setM is non-empty.

Proof. Taking a = 2 and b = 1, we have from (2.3), (2.6) and (2.7) that

f(t) := I(ut) =
t3

2
A(u) +

ωt

2
B(u)− t2p−1

p+ 1
C(u) + e2t3D(u)− e2t−1

2

∫
R3

S0(u)ρ(t−1x) dx. (3.2) eq:3.2

By (2.4) and (2.8), it follows that

f(t) ≥ ωt

2
B(u)− t2p−1

p+ 1
C(u)− Ce2t

3
2 ‖ρ‖ 6

5
‖u‖2,

from which we deduce that f(t) > 0 for small t > 0. On the other hand since 2p − 1 > 3,

one also �nds that f(t) → −∞ as t → ∞. This implies that there exists a maximum point

t = tu > 0 so that f ′(tu) = 0.

By a direct computation, 0 = tuf
′(tu) shows that

0 =
3t3u
2
A(u) +

ωtu
2
B(u)− 2p− 1

p+ 1
t2p−1
u C(u) + 3e2t3uD(u)

+
e2t−1

u

2

∫
R3

S0(u)ρ(t−1
u x) dx+

e2t−1
u

2

∫
R3

S0(u)t−1
u x · ∇ρ(t−1

u x) dx.

Using (2.6) and (2.7) again, we �nd that 0 = J(utu), which ends the proof. �

lem:3.2 Lemma 3.2. Suppose that 2 < p < 5. There exist ρ0, δ0 and α0 > 0 independent of e, ρ such

that if

e2
(
‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5

)
≤ ρ0,

then it holds that

J(u) ≥ α0‖u‖2 for any u ∈ H1(R3,C) with 0 < ‖u‖ < δ0.

Furthermore if J(u) ≤ 0, there exists δ1 > 0 independent of e, ρ such that

‖u‖p+1 ≥ δ1. (3.3) eq:3.3
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Proof. By the Sobolev inequality, Lemma 2.2 and from (3.1), one has

J(u) ≥ min{3, ω}
2

‖u‖2 − C1‖u‖p+1 − C2e
2
(
‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5

)
‖u‖2,

where C1, C2 > 0 are independent of e and ρ. Thus if

e2
(
‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5

)
≤ 1

4C2
min{3, ω},

it follows that

J(u) ≥ min{3, ω}
4

‖u‖2 − C1‖u‖p+1.

Putting δ0 =
(

min{3,ω}
8C1

) 1
p−1

, we obtain

J(u) ≥ min{3, ω}
8

‖u‖2 for 0 < ‖u‖ < δ0.

Next suppose that J(u) ≤ 0. Then by Lemma 2.2, one �nds that

0 ≥ J(u) ≥ 3

2
‖∇u‖22 +

ω

2
‖u‖22 −

2p− 1

p+ 1
‖u‖p+1

p+1 − C3e
2
(
‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5

) (
‖u‖22 + ‖u‖2p+1

)
≥ min{3, ω}

2
‖u‖2 − 2p− 1

p+ 1
‖u‖p+1

p+1 − C3e
2
(
‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5

) (
‖u‖2 + ‖u‖2p+1

)
.

Choosing

e2
(
‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5

)
≤ 1

4C3
min{3, ω},

and using the Sobolev inequality, we obtain

0 ≥ J(u) ≥ min{3, ω}
4

‖u‖2 − 2p− 1

p+ 1
‖u‖p+1

p+1 − C3e
2
(
‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5

)
‖u‖2p+1

≥
{
C4 min{3, ω}

4
− C3e

2
(
‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5

)}
‖u‖2p+1 −

2p− 1

p+ 1
‖u‖p+1

p+1.

Thus if

e2
(
‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5

)
≤ C4

8C3
min{3, ω},

it holds that

0 ≥ J(u) ≥
(
C4 min{3, ω}

8
− 2p− 1

p+ 1
‖u‖p−1

p+1

)
‖u‖2p+1,

which implies that

‖u‖p+1 ≥
(

(p+ 1)C4 min{3, ω}
8(2p− 1)

) 1
p−1

.

This completes the proof. �

Now by Lemma 3.2, we can de�ne

σ := inf
u∈M

I(u). (3.4) eq:3.4

lem:3.3 Lemma 3.3. Suppose that 2 < p < 5. There exist ρ0, α1 > 0 independent of e, ρ such that if

e2
(
‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5

)
≤ ρ0,

then it holds that

I(u) ≥ α1‖u‖2 for any u ∈M.

Especially σ is positive.
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Proof. From (2.3) and (3.1), one has

I(u) =
1

2
A(u) +

ω

2
B(u)− 1

p+ 1
C(u) + e2D(u) + 2e2E1(u),

0 =
3

2
A(u) +

ω

2
B(u)− 2p− 1

p+ 1
C(u) + 3e2D(u)− 2e2E1(u) + e2E2(u),

from which we deduce that

(2p− 1)I(u) = (p− 2)A(u) + (p− 1)ωB(u) + 2(p− 2)e2D(u) + 4pe2E1(u)− e2E2(u).

By Lemma 2.2 and from (2.4), it follows that

(2p− 1)I(u) ≥ min{p− 2, (p− 1)ω}‖u‖2 − C1e
2
(
‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5

)
‖u‖2,

where C1 > 0 is independent of e and ρ. Thus if

e2
(
‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5

)
≤ 1

2C1
min{p− 2, (p− 1)ω},

then we have

(2p− 1)I(u) ≥ min{p− 2, (p− 1)ω}
2C1

‖u‖2,

from which we conclude. �

lem:3.4 Lemma 3.4. Suppose that 2 < p < 5. There exists ρ0 > 0 such that if

e2
(
‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5
+ ‖x · (D2ρx)‖ 6

5

)
≤ ρ0,

thenM is a co-dimension one manifold.

Proof. By Lemma 3.2, it su�ces to show that J ′(u) 6= 0 if u ∈ M. Suppose by contradiction

that u ∈ M satis�es J ′(u) = 0. Then by Lemma 2.1 (i), one �nds that u is a weak solution of

the problem:

− 3∆u+ ωu− (2p− 1)|u|p−1u+ 3e2S0(u)u− e2S1u+ e2S2u = 0. (3.5) eq:3.5

Especially we have

0 = J ′(u)u = 3A(u) + ωB(u)− (2p− 1)C(u) + 12e2D(u)− 4e2E1(u) + 2e2E2(u). (3.6) eq:3.6

Furthermore multiplying x · ∇u by (3.5), using Lemma 2.1 (ii) and arguing as in Lemma 2.5,

one also �nds that

0 = Q(u) :=
3

2
A(u) +

3ω

2
B(u)− 3(2p− 1)

p+ 1
C(u) + 15e2D(u)

− 10e2E1(u) + 7e2E2(u) + e2E3(u).

(3.7) eq:3.7

Now from (2.3), (3.1), (3.6) and (3.7), we obtain the following system of equations:
I − 2e2E1

2e2E1 − e2E2

4e2E1 − 2e2E2

10e2E1 − 7e2E2 − e2E3

 =


1
2

ω
2 − 1

p+1 e2

3
2

ω
2 −2p−1

p+1 3e2

3 ω −(2p− 1) 12e2

3
2

3ω
2 −3(2p−1)

p+1 15e2



A

B

C

D

 . (3.8) eq:3.8

Solving (3.8) with the aid of Mathematica [34], it follows that

D(u) =
2p− 1

24(p− 2)

{
16e2E1(u)− 7e2E2(u)− e2E3(u)− 3I(u)

}
.

By Lemma 2.2 and Lemma 3.3, we �nd that

0 ≤ D(u) ≤ − 2p− 1

8(p− 2)
α1‖u‖2 + Ce2

(
‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5
+ ‖x · (D2ρx)‖ 6

5

)
‖u‖2,
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from which we arrive at a contradiction provided that e2(‖ρ‖ 6
5

+ ‖x · ∇ρ‖ 6
5

+ ‖x · (D2ρx)‖ 6
5
) is

su�ciently small. �

By Lemma 3.4, we are able to apply the method of Lagrange multiplier, which yields that if

u is a nontrivial critical point of I|M, there exists µ ∈ R such that

I ′(u)− µJ ′(u) = 0. (3.9) eq:3.9

lem:3.5 Lemma 3.5. Suppose that 2 < p < 5. There exists ρ0 > 0 such that if

e2(‖ρ‖ 6
5

+ ‖x · ∇ρ‖ 6
5

+ ‖x · (D2ρx)‖ 6
5
) ≤ ρ0,

then it holds that µ = 0, that is, the setM is a natural constraint for the functional I.

Proof. First we have from (2.9), (3.6) and (3.9) that

0 = I ′(u)u− µJ ′(u)u = N(u)− µJ ′(u)u (3.10) eq:3.10

= (1− 3µ)A(u) + (1− µ)ωB(u)− (1− (2p− 1)µ)C(u) + (4− 12µ)e2D(u)

+ (4 + 4µ)e2E1(u)− 2µe2E2(u).

Furthermore from (2.10) and (3.7) and arguing as in Lemma 2.5, one also �nds that

0 = P (u)− µQ(u) (3.11) eq:3.11

=
1− 3µ

2
A(u) +

3(1− µ)ω

2
B(u)− 3− 3µ(2p− 1)

p+ 1
C(u) + (5− 15µ)e2D(u)

+ (10 + 10µ)e2E1(u)− (1 + 7µ)e2E2(u)− µe2E3(u).

Combining (2.3), (3.1), (3.10) and (3.11), we arrive at the following system of equations:
I − 2e2E1

2e2E1 − e2E2

(4 + 4µ)e2E1 − 2µe2E2

(10 + 10µ)e2E1 − (1 + 7µ)e2E2 − e2µE3

 = Λ


A

B

C

D

 , (3.12) eq:3.12

where

Λ =


1
2

ω
2 − 1

p+1 e2

3
2

ω
2 −2p−1

p+1 3e2

3µ− 1 (µ− 1)ω 1− (2p− 1)µ (12µ− 4)e2

3µ−1
2

3(µ−1)ω
2 −3(2p−1)µ−3

β+1 (15µ− 5)e2

 .

By a direct calculation with the aid of Mathematica, it follows that

det Λ =
4(p− 2)(p− 1)e2ω

p+ 1
µ(3µ− 1).

If µ = 1
3 , we can perform row operations on the augmented matrix to obtain

I − 2e2E1

2e2E1 − e2E2

Λ (4 + 4µ)e2E1 − 2µe2E2

(10 + 10µ)e2E1 − (1 + 7µ)e2E2 − e2µE3



→


1
2

ω
2 − 1

p+1 e2 I − 2e2E1

0 −ω 4−2p
p+1 0 −3I + 8e2E1 − e2E2

0 −ω 2− p 0 8e2E1 − e2E2

0 0 0 0 3I + 16
3 e

2E1 − 7
3e

2E2 − 1
3e

2E3

 .
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However by Lemma 2.2 and Lemma 3.3, it holds that

3I(u) +
16

3
e2E1(u)− 7

3
e2E2(u)− 1

3
e2E3(u) > 0 for any u ∈M

if e2(‖ρ‖ 6
5

+ ‖x · ∇ρ‖ 6
5

+ ‖x · (D2ρ(x)x)‖ 6
5
)� 1, which is a contradiction.

On the other hand when det Λ 6= 0, one can solve (3.12) to obtain

0 ≤ C(u) =
p+ 1

4(p− 1)(p− 2)

{
16e2E1(u)− 7e2E2(u)− e2E3(u)− 3I(u)

}
.

This leads a contradiction provided that e2(‖ρ‖ 6
5

+ ‖x · ∇ρ‖ 6
5

+ ‖x · (D2ρx)‖ 6
5
) is su�ciently

small, from which we conclude that µ = 0. �

Now let us de�ne the ground state energy level for (1.1) by

m := inf
u∈S

I(u), S =
{
u ∈ H1(R3,C) \ {0} | I ′(u) = 0

}
.

By Lemma 3.5, we are able to prove the following.

prop:3.6 Proposition 3.6. Suppose that 2 < p < 5 and assume that

e2
(
‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5
+ ‖x · (D2ρx)‖ 6

5

)
≤ ρ0

for su�ciently small ρ0 > 0.

If σ de�ned in (3.4) is attained by some u0 ∈ H1(R3,C) \ {0}, then u0 is a ground state

solution of (1.1), namely u0 satis�es

σ = I(u0) = m.

Proof. Let ũ ∈ H1(R3,C) be a nontrivial critical point of I. Then by Lemma 2.5, it follows

that ũ ∈M and hence

σ = inf
u∈M

I(u) ≤ I(ũ).

Taking in�mum over S, we �nd that σ ≤ m.

On the other hand by Lemma 3.5, if σ is achieved by u0 ∈ M, one has I ′(u0) = 0. This

implies that u0 ∈ S and

m ≤ inf
u∈S

I(u) ≤ I(u0) = σ,

from which we conclude that m = σ. �

By Proposition 3.6, it su�ces to investigate the attainability of σ. To this aim, we next

establish the following energy estimate, which is a key tool in this paper and will be also used

to prove the equivalence between two types of ground state solutions in Section 5.

lem:3.7 Lemma 3.7. Suppose that 2 < p < 5 and take T ≥ 4 so that T 2p−4 ≥ 3. There exist α =

α(T ) > 0 and β = β(T ) > 0 independent of e, ρ, t such that the following estimates hold: For

any u ∈ H1(R3,C),

I(u)− I(ut)−
1− t3

3
J(u) (3.13) 3.7-1

≥ (1− t)2ω

3
‖u‖22 +

α

6(p+ 1)
(1− t)2‖u‖p+1

p+1

− β(1− t)2e2
(
‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5
+ ‖x · (D2ρx)‖ 6

5

) (
‖u‖22 + ‖u‖2p+1

)
for 0 ≤ t ≤ T,
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I(u)− I(ut)−
1− t3

3
J(u) (3.14) 3.7-2

≥ (1− t)2ω

6
‖u‖22 +

t3ω

3T
‖u‖22 +

α

12(p+ 1)
(1− t)2‖u‖p+1

p+1 +
α

6(p+ 1)
t3‖u‖p+1

p+1

− βt3e2
(
‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5
+ ‖x · (D2ρx)‖ 6

5

) (
‖u‖22 + ‖u‖2p+1

)
for t ≥ T.

Assume further that ‖u‖p+1 ≥ δ for some δ > 0 independent of e, ρ. There exists ρ0 > 0

independent of e, ρ, t such that if

e2
(
‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5
+ ‖x · (D2ρx)‖ 6

5

)
≤ ρ0,

then the following estimate holds:

I(u)− I(ut)−
1− t3

3
J(u) ≥ (1− t)2ω

6
‖u‖22 +

αδp−1

12(p+ 1)
(1− t)2‖u‖2p+1 for all t > 0.

(3.15) eq:3.13

Proof. The proof consists of four steps.

Step 1 (Transformation of I(u)− I(ut)): First we observe from (3.2) that

I(u)− I(ut) =
1− t3

2
A(u) +

(1− t)ω
2

B(u)− 1− t2p−1

p+ 1
C(u) + (1− t3)e2D(u)

+ 2e2E1(u) +
e2t−1

2

∫
R3

S0(u)ρ(t−1x) dx.

Transforming (3.1), one also has

1

2
A(u) + e2D(u) =

1

3
J(u)− ω

6
B(u) +

2p− 1

3(p+ 1)
C(u) +

2

3
e2E1(u)− 1

3
e2E2(u),

from which we deduce that

I(u)− I(ut) =
1− t3

3
J(u) +

(1− t)2(t+ 2)ω

6
B(u)

+
1

3(p+ 1)

(
3t2p−1 − (2p− 1)t3 + 2p− 4

)
C(u)

+
8− 2t3

3
e2E1(u)− 1− t3

3
e2E2(u) +

e2t−1

2

∫
R3

S0(u)ρ(t−1x) dx.

Moreover putting

R(t, u) :=
8− 2t3

3
e2E1(u)− 1− t3

3
e2E2(u) +

e2t−1

2

∫
R3

S0(u)ρ(t−1x) dx

= e2

∫
R3

S0(u)M(t, x) dx,

M(t, x) :=
t3 − 1

6

(
ρ(x) + x · ∇ρ(x)

)
− ρ(x)

2
+
ρ(t−1x)

2t
,

we arrive at

I(u)− I(ut) =
1− t3

3
J(u) +

(1− t)2(t+ 2)ω

6
B(u) (3.16) eq:3.14

+
1

3(p+ 1)

(
3t2p−1 − (2p− 1)t3 + 2p− 4

)
C(u) +R(t, u).
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Step 2 (Evaluation of coe�cients): Now for T ≥ 4, one has

(1− t)2(t+ 2)

6
=

(1− t)2

3
+
t3

6
− t2

3
+
t

6

≥ (1− t)2

3
+

2t3

3T
− t3

3T
=

(1− t)2

3
+

t3

3T
for t ≥ T,

from which we get

(1− t)2(t+ 2)

6
≥

{
(1−t)2

3 for 0 ≤ t ≤ T,
(1−t)2

6 + t3

3T for t ≥ T.
(3.17) 3.7-3

Next we claim that

1

3(p+ 1)

(
3t2p−1 − (2p− 1)t3 + 2p− 4

)
≥

{
α

6(p+1)(1− t)2 for 0 ≤ t ≤ T,
α

12(p+1)(1− t)2 + α
6(p+1) t

3 for t ≥ T.
(3.18) 3.7-4

For this purpose, we put g(t) := 3t2p−1 − (2p− 1)t3 + 2p− 4. For t ≥ T , one has

g(t) ≥ t3
(
3t2p−4 − (2p− 1)

)
≥ t3

(
3T 2p−4 − (2p− 1)

)
.

Since 2 < p < 5 and T 2p−4 ≥ 3, it holds 2p−1
3 < 3 ≤ T 2p−4. Taking C1 = 3T 2p−4− (2p−1) > 0,

we get

g(t) ≥ C1t
3 for t ≥ T. (3.19) 3.7-5

Now we take 0 < τ < 1 so that (1 − τ)2p−4 = p
2(p−1) , which is possible because p > 2. For

0 ≤ t ≤ 1− τ , it holds that g′(t) = 3(2p− 1)t2(t2p−4 − 1) < 0 and thus

g(t) ≥ g(1− τ) ≥ g(1− τ)(1− t)2 for 0 ≤ t ≤ 1− τ. (3.20) 3.7-6

Next we show that

g(t) ≥ C2(1− t)2 for t ≥ 1 + τ and some C2 > 0. (3.21) 3.7-7

Letting h(t) := g(t)− C2(1− t)2, one �nds that

h′(t) = 3(2p− 1)t2
(
t2p−4 − 1

)
− 2C2t+ 2C2 ≥ t2

(
3(2p− 1)(t2p−4 − 1)− 2C2

)
≥ t2

(
3(2p− 1)

(
(1 + τ)2p−4 − 1

)
− 2C2

)
for t ≥ 1 + τ.

If 0 < C2 ≤ 3
2(2p− 1)

(
(1 + τ)2p−4 − 1

)
, then h′(t) ≥ 0 on [1 + τ,∞). Thus taking

C2 = min

{
g(1 + τ)

τ2
,
3

2
(2p− 1)

(
(1 + τ)2p−4 − 1

)}
,

we deduce that h′(t) ≥ 0 and h(t) ≥ h(1 + τ) ≥ 0, which shows (3.21).

Finally since g(1) = g′(1) = 0 and g′′(t) = 6(2p−1)
(
(p− 1)t2p−4 − 1

)
, we have by the Taylor

theorem that

g(t) =
1

2
g′′(ξ)(1− t)2 for some ξ between t and 1.

When 1 − τ ≤ t ≤ 1 + τ , it follows that t2p−4 ≥ (1 − τ)2p−4 = p
2(p−1) , from which we obtain

g′′(t) ≥ 6(2p− 1)
(p

2 − 1
)
and

g(t) ≥ 3

2
(2p− 1)(p− 2)(1− t)2 for 1− τ ≤ t ≤ 1 + τ. (3.22) 3.7-8

Combining (3.19)-(3.22) and putting

α := min

{
3

2
(p− 1)(p− 2), g(1− τ), C1, C2

}
,
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we arrive at

g(t) ≥

{
α(1− t)2 for t ≥ 0,

αt3 for t ≥ T.
Moreover since

1

3(p+ 1)

(
3t2p−1 − (2p− 1)t3 + 2p− 4

)
=

1

3(p+ 1)
g(t) =

1

6(p+ 1)
g(t) +

1

6(p+ 1)
g(t),

we obtain (3.18).

Step 3 (Estimate for R(t, u)): First when t ≥ T , one �nd from the assumption (1.6) that

M(t, x) ≥ − t
3 − 1

6

(
|ρ(x)|+ |x · ∇ρ(x)|

)
− 1

2
|ρ(x)| ≥ − t

3

6

(
|ρ(x)|+ |x · ∇ρ(x)|

)
− 1

2
|ρ(x)|

≥ −t3
(

2

3
|ρ(x)|+ 1

6
|x · ∇ρ(x)|

)
.

Thus by Lemma 2.2, we get

R(t, u) ≥ −t3e2

∫
R3

|S0(u)|
(

2

3
|ρ(x)|+ 1

6
|x · ∇ρ(x)|

)
dx

≥ −t3e2

(
2

3
‖ρ‖ 6

5
+

1

6
‖x · ∇ρ‖ 6

5

)
‖S0(u)‖6

≥ −C3t
3e2
(
‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5

) (
‖u‖22 + ‖u‖2p+1

)
for t ≥ T, (3.23) 3.7-9

where C3 > 0 is independent of e, ρ, t. Next for 0 ≤ t ≤ 1
2 , we have

M(t, x) ≥ t3 − 1

6

(
|ρ(x)|+ |x · ∇ρ(x)|

)
− 1

2
|ρ(x)| ≥ −2

3
|ρ(x)| − 1

6
|x · ∇ρ(x)|,

from which one concludes that

R(t, u) ≥ −e2

(
2

3
‖ρ‖ 6

5
+

1

6
‖x · ∇ρ‖ 6

5

)
‖S0(u)‖6

≥ −4(1− t)2e2

(
2

3
‖ρ‖ 6

5
+

1

6
‖x · ∇ρ‖ 6

5

)
‖S0(u)‖6

≥ −C4(1− t)2e2
(
‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5

) (
‖u‖22 + ‖u‖2p+1

)
for 0 ≤ t ≤ 1

2
(3.24) 3.7-10

for some C4 > 0 independent of e, ρ, t. For 1
2 ≤ t ≤ T , we �rst observe that

∂M

∂t
(t, x) =

t2

2

(
ρ(x) + x · ∇ρ(x)

)
− ρ(t−1x)

2t2
− x · ∇ρ(t−1x)

2t3
,

∂2M

∂t2
(t, x) = t

(
ρ(x) + x · ∇ρ(x)

)
+
ρ(t−1x)

t3
+

2x · ∇ρ(t−1x)

t4
+
x ·
(
D2ρ(t−1x)x

)
2t5

.

Then for �xed x ∈ R3, one �nds that M(1, x) = ∂M
∂t (1, x) = 0 and

∂2M

∂t2
(t, x) ≥ −t

(
|ρ(x)|+ |x · ∇ρ(x)|

)
− 1

t3

(
|ρ(t−1x)|+ 2|(t−1x) · ∇ρ(t−1x)|+ 1

2
|(t−1x) ·D2ρ(t−1x)(t−1x)|

)
=: −N(t, x).

By the Taylor theorem, there exists ξ = ξ(t, x) ∈
(

1
2 , T

)
such that

M(t, x) =
1

2

∂2M

∂t2
(ξ, x)(1− t)2 ≥ −1

2
N(ξ, x)(1− t)2.
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Using the Hölder inequality, we deduce that

R(t, u) ≥ −1

2
(1− t)2e2‖N(ξ, x)‖ 6

5
‖S0(u)‖6 for

1

2
≤ t ≤ T.

Moreover since 1
2 < ξ < T , we have

‖N(ξ, x)‖ 6
5
≤ ‖ξρ‖ 6

5
+ ‖ξx · ∇ρ‖ 6

5
+ ‖ξ−

1
2 ρ‖ 6

5
+ 2‖ξ−

1
2x · ∇ρ‖ 6

5
+

1

2
‖ξ−

1
2x(D2ρx)‖ 6

5

≤ T
(
‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5

)
+
√

2

(
‖ρ‖ 6

5
+ 2‖x · ∇ρ‖ 6

5
+

1

2
‖x · (D2ρx)‖ 6

5

)
.

Then by Lemma 2.2, it follows that

R(t, u) ≥ −C5(1− t)2e2
(
‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5
+ ‖x · (D2ρx)‖ 6

5

) (
‖u‖22 + ‖u‖2p+1

)
for

1

2
≤ t ≤ T,

(3.25) 3.7-11

where C5 > 0 is independent of e, ρ, t. From (3.23)-(3.25), letting β = min{C3, C4, C5} > 0,

we �nd that

R(t, u) (3.26) 3.7-12

≥

−β(1− t)2e2
(
‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5
+ ‖x · (D2ρx)‖ 6

5

) (
‖u‖22 + ‖u‖2p+1

)
for 0 ≤ t ≤ T,

−βt3e2
(
‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5
+ ‖x · (D2ρx)‖ 6

5

) (
‖u‖22 + ‖u‖2p+1

)
for t ≥ T.

Step 4 (Conclusion): Now from (3.16), (3.17), (3.18) and (3.26), we can see that (3.13) and

(3.14) hold.

Finally suppose that ‖u‖p+1 ≥ δ. If

e2
(
‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5
+ ‖x(D2ρx)‖ 6

5

)
≤ 1

2β
min

{
2ω

3T
,
αδp−1

6(p+ 1)

}
,

using (3.13) and (3.14), we obtain

I(u)− I(ut)−
1− t3

3
J(u) ≥ (1− t)2ω

6
‖u‖22 +

αδp−1

12(p+ 1)
(1− t)2‖u‖2p+1 for all t > 0.

This �nishes the proof. �

rem:3.8 Remark 3.8. Letting

F (t, x) :=
1

t4
(
ρ(t−1x) + (t−1x) · ∇ρ(t−1x)

)
,

we �nd that M(t, x) can be written as

M(t, x) =
t3 − 1

6

(
ρ(x) + x · ∇ρ(x)

)
− ρ(x)

2
+
ρ(t−1x)

2t

=

∫ t

1

s2

2

(
ρ(x) + x · ∇ρ(x)

)
ds+

1

2

∫ t

1

d

ds

(
s−1ρ(s−1x)

)
ds

=
1

2

∫ t

1
s2
(
F (1, x)− F (s, x)

)
ds.

Thus if F (t, x) is non-increasing with respect to t for every x ∈ R3, it holds that M(t, x) ≥ 0

and hence R(t, u) ≥ 0 for all t > 0, which is a same situation to [30]. However we cannot expect

that F (t, x) is non-increasing in t for doping pro�les.

Indeed by a direct calculation, F (t, x) is non-increasing in t if ρ satis�es

4ρ(x) + 6x · ∇ρ(x) + x ·
(
D2ρ(x)x

)
≥ 0 for all x ∈ R3. (3.27) eq:3.18
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When ρ is a Gaussian function e−α|x|
2
for α > 0, one �nds that

2ρ(x) + 3x · ∇ρ(x) +
1

2
x ·
(
D2ρ(x)x

)
=
(
2α2|x|4 − 7α|x|2 + 2

)
e−α|x|

2
.

Hence no matter how we choose α, (3.27) fails to hold near the in�ection point. Moreover if we

consider ρ(x) = 1
1+|x|r , we see that

2ρ(x)+3x·∇ρ(x)+
1

2
x·
(
D2ρ(x)x

)
=

1

2(1 + |x|r)3

{
(r − 1)(r − 4)|x|2r − (r2 + 5r − 8)|x|r + 4

}
.

Then it follows that

r > 4 ⇒ (3.27) fails to hold near the in�ection point,

1 ≤ r ≤ 4 ⇒ (3.27) fails to hold for large |x|,

0 < r < 1 ⇒ ρ /∈ L
6
5 (R3).

In this sense, the assumption (1.5) and (3.27) seem to be inconsistent.

Now using 3.7, we can show the following.

lem:3.9 Lemma 3.9. Suppose that 2 < p < 5 and assume that

e2
(
‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5
+ ‖x · (D2ρx)‖ 6

5

)
≤ ρ0

for su�ciently small ρ0 > 0.

Then for any u ∈ H1(R3,C)\{0}, there exists a unique tu > 0 such that utu ∈M. Especially

for u ∈M,

ut ∈M if and only if tu = 1.

Proof. By Lemma 3.1, we know that there exists tu > 0, which is a maximum point of f(t)

de�ned in (3.2), such that utu ∈ M. Thus it su�ces to show that f(t) has a unique critical

point for t > 0.

Now suppose by contradiction that there exist 0 < t1 < t2 such that f ′(t1) = f ′(t2) = 0. As

we have observed in the proof of Lemma 3.1, it holds that J(ut) = tf ′(t), which yields that

J(ut1) = J(ut2) = 0. (3.28) eq:3.19

Since ut1 , ut2 ∈ M, we can use (3.3) to show that ‖ut1‖p+1 ≥ δ1 and ‖ut2‖p+1 ≥ δ1. Then we

are able to apply (3.15) if e2
(
‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5
+ ‖x · (D2ρx)‖ 6

5

)
is su�ciently small.

Applying (3.15) with u = ut1 and t = t2
t1
, we have

I(ut1) ≥ I(ut2) +
t31 − t32

3t31
J(ut1) +

(t1 − t2)2ω

6t21
‖ut1‖22 +

αδp−1
1 (t1 − t2)2

12(p+ 1)t21
‖ut1‖2p+1.

Similarly one gets

I(ut2) ≥ I(ut1) +
t32 − t31

3t32
J(ut2) +

(t2 − t1)2ω

6t22
‖ut2‖22 +

αδp−1
1 (t2 − t1)2

12(p+ 1)t22
‖ut2‖2p+1.

Thus from (3.28), it follows that

0 ≥ ω

6
(t1 − t2)2

(
1

t21
‖ut1‖22 +

1

t22
‖ut2‖22

)
+

αδp−1
1

12(p+ 1)
(t1 − t2)2

(
1

t21
‖ut1‖2p+1 +

1

t22
‖ut2‖2p+1

)
> 0,

from which arrive at a contradiction and conclude that f(t) has a unique critical point. �

rem:3.10 Remark 3.10. By Proposition 3.6 and Lemma 3.9, we can obtain the following minimax char-

acterization of m:

m = inf
u∈H1(R3,C)\{0}

max
t>0

I(ut).
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4. Existence of a ground state solution for 2 < p < 5

In this section, we establish the existence of a ground state solution of (1.1). For this purpose,

we de�ne the energy functional I∞ associated with (1.3) by

I∞(u) :=
1

2
A(u) +

ω

2
B(u)− 1

p+ 1
C(u) + e2D(u) for u ∈ H1(R3,C).

Indeed if ρ(x)→ 0 as |x| → ∞, I∞ can be seen as a functional at in�nity. We de�ne the ground

state energy corresponding to (1.3) by

m∞ := inf
u∈S∞

I∞(u), S∞ :=
{
u ∈ H1(R3,C) | I ′∞(u) = 0

}
.

Let us denote by J∞ the Nehari-Pohozaev functional for I∞, that is,

J∞(u) :=
3

2
A(u) +

ω

2
B(u)− 2p− 1

p+ 1
C(u) + 3e2D(u).

We also set

σ∞ := inf
u∈M∞

I∞(u), M∞ :=
{
u ∈ H1(R3,C) \ {0} | J∞(u) = 0

}
.

Then by the result in [3] with minor modi�cations considering u ∈ H1(R3,C), it follows that

σ∞ = m∞ and σ∞ is achieved by some u∞ ∈ H1(R3,C) \ {0} for 2 < p < 5 and any e > 0.

Moreover arguing as Lemma 3.7 (see also [30, Corollary 3.3]), we have

I∞(u) ≥ I∞(ut) +
1− t3

3
J∞(u) for all u ∈ H1(R3,C) and t > 0, (4.1) eq:4.1

where ut(x) = t2u(tx).

To prove the attainability of σ, we need the following lemma. Note that this is the only part

where we require (1.6).

lem:4.1 Lemma 4.1. Suppose that 2 < p < 5. Assume further (1.5) and (1.6). Then it follows that

σ < σ∞ and m < m∞.

Proof. First we observe from (1.6) that

I(u) < I∞(u) for all u ∈ H1(R3,C) \ {0}

because E1(u) < 0 by (2.2).

Now let u∞ be a ground state solution for (1.3). By Lemma 3.1, there exists t∞ > 0 such

that ũ∞(x) := t2∞u∞(t∞x) ∈M. Then from (4.1) and J∞(u∞) = 0, we obtain

σ ≤ I(ũ∞) < I∞(ũ∞) ≤ I∞(u∞) = σ∞,

which ends the proof. �

Now we are ready to prove the following result.

prop:4.2 Proposition 4.2. Suppose that 2 < p < 5. Assume further (1.5), (1.6) and

e2
(
‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5
+ ‖x · (D2ρx)‖ 6

5

)
≤ ρ0

for su�ciently small ρ0 > 0.

Then there exists u0 ∈ H1(R3,C) \ {0} such that

I(u0) = σ and J(u0) = 0.
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Proof. Let {un} ⊂ M be a minimizing sequence for σ, that is,

I(un) = σ + o(1) and J(un) = 0. (4.2) eq:4.2

Then by Lemma 3.3, it follows that

σ + o(1) = I(un) ≥ α1‖u‖2,

which implies that ‖un‖ is bounded. Thus passing to a subsequence, we may assume that

un ⇀ u0 in H1(R3,C) for some u0 ∈ H1(R3,C). We divide the proof into two steps.

Step 1: We claim that u0 6≡ 0.

Suppose by contradiction that u0 ≡ 0 so that un ⇀ 0 in H1(R3,C). Then by Lemma 2.4, it

follows that

E1(un)→ 0 and E2(un)→ 0 as n→∞.
Since we can write

I(u) = I∞(u) + 2e2E1(u) and J(u) = J∞(u)− 2e2E1(u) + e2E2(u),

we have from (4.2) that

I∞(un)→ σ and J∞(un)→ 0 as n→∞. (4.3) eq:4.3

Arguing as in Lemma 3.2, we also deduce that ‖un‖p+1 ≥ δ for some δ > 0 independent of e, ρ

and n ∈ N.
Now we apply the concentration compactness principle [24, 33] to show that there exist δ̃ > 0

and {yn} ⊂ R3 such that ∫
B1(yn)

|un(x)|p+1 dx ≥ δ̃.

Letting ûn(x) := un(x+ yn), we have

‖ûn‖ = ‖un‖ and

∫
B1(0)

|ûn(x)|p+1 dx ≥ δ̃.

Especially, there exists û ∈ H1(R3,C) \ {0} such that ûn ⇀ û in H1(R3,C). Moreover from

(4.3), one also �nds that

I∞(ûn) = I∞(un) = σ + o(1) and J∞(ûn) = J∞(un) = o(1). (4.4) eq:4.4

Let us put vn := ûn− û. Then by the Brezis-Lieb lemma [10] and Lemma 2.3, it follows that

I∞(ûn) = I∞(û) + I∞(vn) + o(1) and J∞(ûn) = J∞(û) + J∞(vn) + o(1).

We also de�ne

K∞(u) := I∞(u)− 1

3
J∞(u) =

ω

3
B(u) +

2(p− 2)

3(p− 1)
C(u).

Then from (4.4), one �nds that

K∞(vn) = σ −K∞(û) + o(1) and J∞(vn) = −J∞(û) + o(1). (4.5) eq:4.5

If there exists a subsequence {vnj} ⊂ {vn} such that vnj = 0, then passing to a limit along this

subsequence, it holds from (4.5) that K∞(û) = σ and J∞(û) = 0. This implies that

σ∞ ≤ I∞(û) = K∞(û) +
1

3
J∞(û) = σ,

which is absurd by Lemma 4.1. Thus we may assume that vn 6= 0. Arguing as Lemma 3.9

(see also [27, Lemma 3.3], [30, Lemma 2.4]), there exists a unique t̂n > 0 such that φ̂n(x) :=

(t̂n)2vn(t̂nx) ∈M∞.
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Next we prove that J∞(û) ≤ 0. Suppose by contradiction that J∞(û) > 0. Then from (4.5),

it follows that J∞(vn) ≤ 0 and hence ‖vn‖p+1 ≥ δ1 by Lemma 3.2. Using (3.15) with ρ ≡ 0

and (4.5), one deduces that

σ −K∞(û) + o(1) = K∞(vn) = I∞(vn)− 1

3
J∞(vn)

≥ I∞(φ̂n)− (t̂n)3

3
J∞(vn)

≥ σ∞ −
(t̂n)3

3
J∞(vn) ≥ σ∞,

which yields that

σ∞ ≤ σ −K∞(û) < σ∞ −K∞(û) and thus K∞(û) < 0.

This is a contradiction to the fact K∞(u) > 0 for any u ∈ H1(R3,C)\{0} and hence J∞(û) ≤ 0.

Now by Lemma 3.9, there exists a unique t̂ > 0 such that φ̂(x) := (t̂)2û(t̂x) ∈ M∞. Then

from (3.15) with ρ ≡ 0, (4.4) and by the Fatou lemma, we obtain

σ = lim
n→∞

{
I∞(ûn)− 1

3
J∞(ûn)

}
= lim

n→∞
K∞(ûn) ≥ K∞(û)

= I∞(û)− 1

3
J∞(û)

≥ I∞(φ̂)− (t̂)3

3
J∞(û)

≥ σ∞ −
(t̂)3

3
J∞(û) ≥ σ∞.

This is a contradiction to Lemma 4.1 and hence we conclude that u0 6≡ 0.

Step 2: We prove that I(u0) = σ and J(u0) = 0.

Let us de�ne wn := un−u0. By Lemma 2.3, Lemma 2.4 and the Brezis-Lieb lemma, we have

I(un) = I(u0) + I(wn) + o(1) and J(un) = J(u0) + J(wn) + o(1).

We also put

K(u) := I(u)− 1

3
J(u)

=
ω

3
B(u) +

2(p− 2)

3(p+ 1)
C(u) +

8

3
e2E1(u)− 1

3
e2E2(u) for u ∈ H1(R3,C).

Then from (4.2), it holds that

K(wn) = σ −K(u0) + o(1) and J(wn) = −J(u0) + o(1). (4.6) eq:4.6

If there exists a subsequence {wnj} ⊂ {wn} such that wnj = 0, then passing to a limit along

this subsequence, we arrive at K(u0) = σ and J(u0) = 0. This implies that I(u0) = σ and

hence we conclude. Thus we may assume that wn 6= 0.

Next we show that J(u0) ≤ 0. Indeed if J(u0) > 0, it follows from (4.6) that J(wn) ≤ 0 and

hence ‖wn‖p+1 ≥ δ1 by Lemma 3.2. Then by Lemma 3.9, there exists a unique tn > 0 such

that φn(x) := t2nwn(tnx) ∈M. Using (3.15) and (4.6), we deduce that

σ −K(u0) + o(1) = K(wn) = I(wn)− 1

3
J(wn)

≥ I(φn)− t3n
3
J(wn)

≥ σ − t3n
3
J(wn) ≥ σ,
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yielding that K(u0) ≤ 0. However this is a contradiction because K(u) > 0 for any u ∈
H1(R3,C) \ {0} by Lemma 2.2 provided that e2(‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5
) is su�ciently small, from

which we conclude that J(u0) ≤ 0.

Now using Lemma 3.9 again, there exists a unique t0 > 0 such that φ0(x) := t20u0(t0x) ∈M.

Moreover since J(u0) ≤ 0, we are able to use (3.15) by Lemma 3.2. Then from (4.2), Lemma

2.4 and by the Fatou lemma, one �nds that

σ = lim
n→∞

{
I(un)− 1

3
J(un)

}
= lim

n→∞
K(un) ≥ K(u0)

= I(u0)− 1

3
J(u0)

≥ I(φ0)− t30
3
J(u0)

≥ σ − t30
3
J(u0) ≥ σ, (4.7) eq:4.7

from which we get K(u0) = σ. Moreover if J(u0) < 0, (4.7) leads a contradiction. Thus it

follows that J(u0) = 0 and hence I(u0) = σ. This completes the proof. �

rem:4.3 Remark 4.3. As we have observed in the proof of Proposition 4.2,

K(u) =
ω

3
B(u) +

2(p− 2)

3(p+ 1)
C(u) +

8

3
e2E1(u)− 1

3
e2E2(u)

=

∫
R3

{
ω

3
|u(x)|2 +

2(p− 2)

3(p+ 1)
|u(x)|p+1 − e2

6
S0(u)(x)

(
ρ(x) + x · ∇ρ(x)

)}
dx

plays an important role. Especially it is natural to apply the concentration compactness principle

to the function

ρn(x) :=
ω

3
|un(x)|2 +

2(p− 2)

3(p+ 1)
|un(x)|p+1 − e2

6
S0(un)(x)

(
ρ(x) + x · ∇ρ(x)

)
for a minimizing sequence {un} ⊂ M. However we don't know whether ρn(x) ≥ 0 for all

x ∈ R3, although one knows that K(un) ≥ 0 if e2(‖ρ‖ 6
5

+ ‖x · ∇ρ‖ 6
5
) is small by Lemma 2.2.

If ρ satis�es

ρ(x) + x · ∇ρ(x) ≤ 0 for all x ∈ R3, (4.8) eq:4.8

it follows that ρn ≥ 0 on R3. However the condition (4.8) seems to be inconsistent with (1.5)

and (1.6). For example, if we consider the Gaussian function ρ(x) = e−α|x|
2
for α > 0, we have

ρ(x) + x · ∇ρ(x) =
(
1− 2α|x|2

)
e−α|x|

2
.

Thus no matter how we choose α, (4.8) fails to hold near the origin.

Proof of Theorem 1.1. By Proposition 3.6 and Proposition 4.2, there exists u0 ∈ H1(R3,C)\{0}
such that

I(u0) = σ = m and J(u0) = 0, (4.9) eq:4.9

namely, u0 is a ground state solution of (1.1). We claim that u0 can be assumed to be real-valued

up to phase shift.

For this purpose, we argue as in [1] and show that∣∣∇|u0|
∣∣ = |∇u0| a.e. in R3. (4.10) eq:4.10

Indeed suppose by contradiction that L
({
x ∈ R3 |

∣∣∇|u0(x)|
∣∣ < |∇u0(x)|

})
> 0, where L(A) is

the Lebesgue measure for the set A ⊂ R3. Then it follows that

σ = I(u0) > I(|u0|), 0 = J(u0) > J(|u0|) and K(u0) > K(|u0|). (4.11) eq:4.11
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Moreover by Lemma 3.9, there exists a unique t0 > 0 such that v0(x) := t20|u0|(t0x) ∈M. Then

from (3.15), (4.9) and (4.11), we �nd that

σ = I(u0)− 1

3
J(u0) = K(u0) > K(|u0|)

= I(|u0|)−
1

3
J(|u0|)

≥ I(v0)− t30
3
J(|u0|) > I(v0) ≥ σ,

which is a contradiction and hence (4.10) holds.

Now using the polar form, we can write u0(x) = |u0(x)|eiη(x). Then a direct calculation

shows that

|∇u0|2 =
∣∣∇|u0|

∣∣2 + |u0|2|∇η|2,

yielding that ∇η ≡ 0 a.e. in R3 from (4.10). This implies that u0(x) = eiθ|u0(x)| for some

θ ∈ R and hence u0 can be assumed to be real-valued up to phase shift. �

5. Relation between action GSS and energy GSS

In this section, we investigate the relation between action ground state solutions and energy

ground state solutions of (1.1).

For given µ > 0, let uµ ∈ H1(R3,C) be an energy ground state solution of (1.1), that is,

E(uµ) = inf
B(µ)

E(u), Bµ =
{
u ∈ H1(R3,C) | ‖u‖22 = µ

}
,

E(u) :=
1

2
A(u)− 1

p+ 1
C(u) + e2D(u) + 2e2E1(u).

By the result in [16], if 2 < p < 7
3 , c∞(µ) < 0 and e2

(
‖ρ‖ 6

5
+ ‖x · ∇ρ‖ 6

5

)
≤ ρ0 for su�ciently

small ρ0 > 0, uµ exists and the corresponding Lagrange multiplier ω = ωµ is positive. Here

c∞(µ) is the minimum energy de�ned in (1.8). Especially uµ is a nontrivial solution of (1.1)

with ω = ωµ.

To clarify the dependence with respect to ω, we write I = Iω, J = Jω, S = Sω and m = mω.

Under these preparations, we have the following result.

prop:5.1 Proposition 5.1. Let µ > 0 be given so that c∞(µ) < 0 and suppose that 2 < p < 7
3 . Under

the assumptions in Theorem 1.1, the energy ground state solution uµ is an action ground state

solution of (1.1) with ω = ωµ.

Proof. Since uµ is a nontrivial critical point of Iωµ , we have

uµ ∈ Sωµ and mωµ ≤ Iωµ(uµ). (5.1) eq:5.1

Thus it su�ces to show that Iωµ(uµ) ≤ mωµ .

Now let wµ ∈ H1(R3,C)\{0} be an action ground state solution of (1.1) with ω = ωµ, which

exists by Theorem 1.1. Then by (3.15) and Jωµ(wµ) = 0, it follows that

Iωµ(wµ)− Iωµ ((wµ)t) ≥
1− t3

2
Jωµ(wµ) = 0 for all t > 0, (5.2) eq:5.2

where (wµ)t = t2wµ(tx). Taking tµ :=
‖uµ‖22
‖wµ‖22

, one has∥∥(wµ)tµ
∥∥2

2
= ‖uµ‖22 and hence E(uµ) ≤ E

(
(wµ)tµ

)
.
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Thus from (5.1) and (5.2), we obtain

mωµ ≤ Iωµ(uµ) = E(uµ) +
ωµ
2
‖uµ‖22

≤ E
(
(wµ)tµ

)
+
ωµ
2

∥∥(wµ)tµ
∥∥2

2

= Iωµ
(
(wµ)tµ

)
≤ Iωµ(wµ) = mωµ ,

from which we conclude. �

In order to consider the converse, let Ω(µ) be the set of Lagrange multipliers associated with

energy ground state solutions for Bµ, namely

Ω(µ) := { ωµ > 0 | ωµ is the Lagrange multiplier associated with an energy ground state

of (1.1) under the constraint Bµ } .

By the result in [16], we know that Ω(µ) 6= ∅ for every µ > 0, when 2 < p < 7
3 and e2(‖ρ‖ 6

5
+

‖x · ∇ρ‖ 6
5
) is small. Moreover for any ωµ ∈ Ω(µ), there exists an action ground state solution

wµ ∈ H1(R3,C) \ {0} of (1.1) with ω = ωµ by Theorem 1.1.

In this setting, the following result holds.

prop:5.2 Proposition 5.2. Let µ > 0 be given so that c∞(µ) < 0 and suppose that 2 < p < 7
3 . Under the

assumptions of Theorem 1.1, wµ is an energy ground state solution of (1.1) under the constraint

Bµ.

Proof. Since wµ is an action ground state solution of (1.1) with ω = ωµ, by using (3.15), we

have Jωµ(wωµ) = 0 and

Iωµ(wµ)− Iωµ ((wµ)t) ≥
(1− t)2ωµ

6
‖wµ‖22 ≥ 0 for all t > 0. (5.3) eq:5.3

Now let ũµ be an energy ground state solution of (1.1) under the constraint Bµ whose

Lagrange multiplier coincides with ωµ. Then if follows that

mωµ ≤ Iωµ(ũµ) and E(ũµ) ≤ E(u) for any u ∈ H1(R3,C) with ‖u‖22 = µ.

Especially choosing t̃µ = µ
‖wµ‖22

, we have∥∥∥(wµ)t̃µ

∥∥∥2

2
= µ = ‖ũµ‖22 and E(w̃µ) ≤ E

(
(wµ)t̃µ

)
. (5.4) eq:5.4

Then from (5.3) and (5.4), we deduce that

mωµ ≤ Iωµ(ũµ) = E(ũµ) +
ωµ
2
‖ũµ‖22

≤ E
(

(wµ)t̃µ

)
+
ωµ
2

∥∥∥(wµ)t̃µ

∥∥∥2

2

= Iωµ

(
(wµ)t̃µ

)
≤ Iωµ(wµ) = mωµ ,

which yields that Iωµ

(
(wµ)t̃µ

)
= Iωµ(wµ). Going back to (5.3), one �nds that

0 ≥ (1− t̃µ)2ωµ
6

‖wµ‖22 ≥ 0,

from which we conclude that t̃µ = 1 and hence

E(wµ) = E(ũµ) = inf
Bµ
E(u).

This completes the proof. �
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rem:5.3 Remark 5.3. (i) By Proposition 5.2, if ωµ ∈ Ω(µ), every action ground state solution of (1.1)

with ω = ωµ share the same L2-norm.

(ii) Although Ω(µ) 6= ∅ for every µ > 0, we don't know whether Ω(µ) is an interval. Moreover

we don't know for given ωµ ∈ Ω(µ), there exists a unique µ > 0 such that the corresponding

Lagrange multiplier coincides with ωµ. In other words, it is not known if

µ 7→ ωµ : (0,∞)→ (0, `) is one to one mapping for some ` > 0. (5.5) eq:5.5

(5.5) is important in investigating further properties of ground state solutions, such as unique-

ness and stability. However (5.5) is known only in limited situations; see [13, 16, 19]. In

particular, it is not known whether (5.5) holds true even when ρ ≡ 0.

Proof of Theorem 1.2. The claim follows by Propositions 5.1 and 5.2. �

6. Existence of a radial ground state solution for 1 < p < 2

In this section, we consider the case 1 < p < 2, for which arguments in sections 3-5 do not

work well. Especially we cannot handle the energy inequality (3.15) in Lemma 3.7 because the

coe�cient in front of ‖u‖p+1
p+1 becomes negative when 1 < p < 2.

In the case 1 < p < 2, we only have the following weak result.

thm:6.1 Theorem 6.1. Suppose that 1 < p < 2. Assume ρ ∈ L
6
5 (R3) and ρ(x) = ρ(|x|). There exists

e0 > 0 such that if 0 < e ≤ e0, (1.1) has a radial ground state solution u0, that is, u0 satis�es

I(u0) = inf
u∈Srad

I(u), Srad = {u ∈ H1
rad(R3) | I ′(u) = 0},

where H1
rad(R3) = {u ∈ H1(R3,R) | u(x) = u(|x|)}.

To this aim, let us recall the functional I∞ for ρ ≡ 0, which was de�ned by

I∞(u) :=
1

2
A(u) +

ω

2
B(u)− 1

p+ 1
C(u) + e2D(u) for u ∈ H1(R3,C).

When 1 < p < 2, the following properties are known; see [27, Theorem 4.3].

prop:6.2 Proposition 6.2. Suppose that 1 < p < 2 and e > 0. Then it holds:

(i) inf
H1
rad(R3)

I∞(u) > −∞,

(ii) I∞ satis�es the Palais-Smale condition on H1
rad(R3).

Now by Lemma 2.2, one �nds that

I(u) = I∞(u) + e2E1(u) ≥ I∞(u)− Ce2‖ρ‖ 6
5
‖u‖2 for any u ∈ H1(R3,C),

from which we conclude that inf
H1
rad(R3)

I(u) > −∞. Moreover since E1 is a compact operator by

Lemma 2.4, I also satis�es the Palais-Smale condition on H1
rad(R3).

Proof of Theorem 6.1. Let us de�ne the energy functional I0 for e = 0:

I0(u) =
1

2
A(u) +

ω

2
B(u)− 1

p+ 1
C(u) for u ∈ H1(R3,C).

It is standard to show that there exists ũ ∈ H1
rad(R3) such that I0(ũ) < 0. Then by Lemma

2.2, one has
I(ũ) = I0(ũ) + e2D(ũ) + e2E1(ũ)

≤ I0(ũ) + Ce2‖ũ‖4 + Ce2‖ρ‖ 6
5
‖ũ‖2.

Choosing a small e0 > 0, we have I(ũ) < 0 for 0 < e ≤ e0 and hence inf
u∈H1

rad(R3)
I(u) < 0.
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By Proposition 6.2, we are able to apply Ekeland's variational principle. Then there exists

u0 ∈ H1
rad(R3) \ {0} such that

I(u0) = min
u∈H1

rad(R3)
I(u) < 0.

Particularly, u0 is a nontrivial solution of (1.1). Moreover since u0 is a global minimizer on

H1
rad(R3), it follows that

I(u0) ≥ inf
u∈Srad

I(u) ≥ inf
u∈H1

rad(R3)
I(u) = I(u0),

yielding that u0 is a radial ground state solution of (1.1). �

rem:6.3 Remark 6.3. (i) In [16], we have shown that (1.1) has an energy ground state solution if

1 < p < 2 and e is su�ciently small. Unfortunately unlike the case 2 < p < 7
3 , we cannot say

anything about the relation between the radial ground state solution obtained in Theorem 6.1

and the energy ground state solution in [16].

(ii) In the case p = 2, it remains open whether (1.1) has a nontrivial solution for any ω > 0

and small e > 0. Moreover in [13], thanks to the scaling invariance of (1.3) when p = 2, it

was proved that an energy ground state solution of (1.3) is an action ground state solution and

vise versa. However due to the loss of scaling invariance for ρ 6≡ 0, we don't know if an energy

ground state solution of (1.1) obtained in [16] is an action ground state of (1.1).

7. The case ρ is a characteristic function

In this section, we consider the case where the doping pro�le ρ is a characteristic function,

which appears frequently in physical literatures [22, 26, 28]. More precisely, let {Ωi}mi=1 ⊂ R3

be disjoint bounded open sets with smooth boundary. For αi > 0 (i = 1, · · · ,m), we assume

that the doping pro�le ρ has the form:

ρ(x) =
m∑
i=1

αiχΩi(x), χΩi(x) =

{
1 (x ∈ Ωi),

0 (x /∈ Ωi).
(7.1) eq:7.1

In this case, ρ cannot be weakly di�erentiable so that the assumption (1.5) does not make

sense. Even so, we are able to obtain the existence of ground state solutions by imposing some

smallness condition related with αi and Ωi.

To state our main result for this case, let us put L := sup
x∈∂Ω

|x| < ∞. A key is the following

sharp boundary trace inequality due to [2, Theorem 6.1], which we present here according to

the form used in this paper.

prop:7.1 Proposition 7.1. Let Ω ⊂ R3 be a bounded domain with smooth boundary and γ : H1(Ω) →
L2(∂Ω) be the trace operator. Then it holds that∫
∂Ω
|γ(u)|2 dS ≤ κ1(Ω)

∫
Ω
|u|2 dx+κ2(Ω)

(∫
Ω
|u|2 dx

) 1
2
(∫

Ω
|∇u|2 dx

) 1
2

for any u ∈ H1(Ω),

where κ1(Ω) = |∂Ω|
|Ω| , κ2(Ω) =

∥∥|∇w|∥∥
L∞(∂Ω)

and w is a unique solution of the torsion problem:

∆w = κ1(Ω) in Ω,
∂w

∂n
= 1 on ∂Ω.

In relation to the size of ρ, we de�ne

D(Ω) := L|Ω|
1
6 |
(
L‖H‖L2(∂Ω) + |∂Ω|

1
2

)(
κ1(Ω)|Ω|

1
3 + κ2(Ω)

) 1
2
,

where H is the mean curvature of ∂Ω.
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rem:7.2 Remark 7.2. It is known that κ2(Ω) ≥ 1; see [2]. Then by the isoperimetric inequality in R3:

|∂Ω| ≥ 3|Ω|
2
3 |B1|

1
3 ,

and the fact |Ω| ≤ |BL(0)| = L3|B1|, we �nd that

D(Ω) ≥
(
|Ω|
|B1|

) 1
3

|Ω|
1
6 ·
√

3|Ω|
1
3 |B1|

1
6

(
3|B1|

1
3 + 1

) 1
2

= C|Ω|
5
6 = C‖χΩ‖

L
6
5 (R3)

, (7.2) eq:7.2

where C is a positive constant independent of Ω.

Under these preparations, we have the following result.

thm:7.3 Theorem 7.3. Suppose that 2 < p < 5 and assume (7.1). There exists ρ0 > 0 such that if

e2
m∑
i=1

αiD(Ωi) ≤ ρ0,

then (1.1) has a ground state solution u0. Moreover the statement of Theorem 1.2 holds true.

Note that when 1 < p < 2, we have only assumed that ρ(x) ∈ L
6
5 (R3) and ρ(x) = ρ(|x|) in

Theorem 6.1, which covers the case (7.1).

We mention that the �rst part x · ∇ρ(x) and x · (D2ρ(x)x) appeared was the de�nition of

E2(u) and E3(u) in (2.5). Under the assumption (7.1), we replace them by

E1(u) = −1

4

m∑
i=1

αi

∫
Ωi

S0(u) dx,

E2(u) := −1

2

m∑
i=1

αi

∫
∂Ωi

S0(u)x · ni dSi,

E3(u) := −1

2

m∑
i=1

αi

∫
∂Ωi

Hi(x)S0(u)(x · ni)2 dSi,

where ni is the unit outward normal on ∂Ωi. Indeed we have the following.

lem:7.4 Lemma 7.4. It holds that

lim
R→∞

∫
BR(0)

S0(u)ux · ∇ū dx = −10E1(u) + E2(u),

lim
R→∞

∫
BR(0)

S1(u)ux · ∇ū dx = −6E2(u)− E3(u).

Proof. For simplicity, let us consider the casem = 1 and α = 1. First by the divergence theorem

and the fact S0(u)|u|2 ∈ L1(R3), one �nds that

lim
R→∞

∫
BR(0)

S0(u)ux · ∇ū dx = − 1

8π
lim
R→∞

∫
Ω

∫
BR(0)

u(y)y · ∇u(y)

|x− y|
dy dx

=
1

16π

∫
Ω

∫
R3

|u(y)|2 divy y

|x− y|
dy dx+

1

16π

∫
Ω

∫
R3

|u(y)|2y · ∇y
(

1

|x− y|

)
dy dx

=
3

16π

∫
Ω

∫
R3

|u(y)|2

|x− y|
dy dx+

1

16π

∫
Ω

∫
R3

|u(y)|2 y · (x− y)

|x− y|3
dy dx.
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Using the identity y · (x− y) = −|x− y|2 + x · (x− y), the Fubini theorem and the divergence

theorem, we get

lim
R→∞

∫
BR(0)

S0(u)ux · ∇ū dx

=
1

8π

∫
Ω

∫
R3

|u(y)|2

|x− y|
dy dx− 1

16π

∫
R3

∫
Ω
|u(y)|2x · ∇x

(
1

|x− y|

)
dx dy

=
1

8π

∫
Ω

∫
R3

|u(y)|2

|x− y|
dy dx− 1

16π

∫
R3

∫
Ω

divx

(
|u(y)|2x
|x− y|

)
dx dy +

3

16π

∫
R3

∫
Ω

|u(y)|2

|x− y|
dx dy

=
5

16π

∫
Ω

∫
R3

|u(y)|2

|x− y|
dy dx− 1

16π

∫
R3

∫
Ω

|u(y)|2

|x− y|
x · ndS dy

=
5

2

∫
Ω
S0(u) dx− 1

2

∫
∂Ω
S0(u)x · ndS = −10E1(u) + E2(u).

Similarly, we have

lim
R→∞

∫
BR(0)

S1(u)ux · ∇ū dx

= − 1

8π
lim
R→∞

∫
∂Ω

∫
BR(0)

u(y)y · ∇u(y)

|x− y|
x · ndy dS

=
1

8π

∫
∂Ω

∫
R3

|u(y)|2x · n
|x− y|

dy dS − 1

16π

∫
R3

∫
∂Ω
|u(y)|2x · ∇x

(
1

|x− y|

)
x · ndS dy

=
1

8π

∫
∂Ω

∫
R3

|u(y)|2x · n
|x− y|

dy dS − 1

16π

∫
R3

∫
∂Ω

divx

(
|u(y)|2(x · n)x

|x− y|

)
dS dy

+
3

16π

∫
R3

∫
∂Ω

|u(y)|2x · n
|x− y|

dS dy +
1

16π

∫
R3

∫
∂Ω

|u(y)|2x · ∇x(x · n)

|x− y|
dS dy

=
5

2

∫
∂Ω
S0(u)x · ndS − 1

2

∫
∂Ω

divx
(
S0(u)(x · n)x

)
dS +

1

2

∫
∂Ω
S0(u)x · ∇x(x · n) dS. (7.3) eq:7.3

Applying the surface divergence theorem (see e.g. [29, 7.6]) and noticing that ∂(∂Ω) = ∅, it
follows that∫

∂Ω
divx(S0(u)(x · n)x) dS = −

∫
∂Ω

(
S0(u)(x · n)x

)⊥ · ~H dS = −
∫
∂Ω
H(x)S0(u)(x · n)2 dS,

where x⊥ is the normal component of x and ~H is the mean curvature vector ~H = Hn. Finally

since x · ∇x(x · n) = x · n, we deduce from (7.3) that

lim
R→∞

∫
BR(0)

S1(u)ux · ∇ū dx

= 3

∫
∂Ω
S0(u)x · ndS +

1

2

∫
∂Ω
H(x)S0(u)(x · n)2 dS = −6E2(u)− E3(u),

which ends the proof. The general case can be shown by summing up the integrals. �

By Lemma 7.4, the Pohozev identity can be reformulated as follows.

lem:7.5 Lemma 7.5. Under the assumption (7.1), the functionals P (u) de�ned in (2.10) and Q(u) in

(3.7) have the same form.

Proof. As we have mentioned in the proof of Lemma 2.5, the Pohozaev identity can be shown

by multiplying x · ∇ū and ex · S0(u) by (1.1), integrating them over BR(0) and passing to a

limit R→∞. Then we are able to obtain (2.10) and (3.7) by Lemma 7.4. �

Next we establish estimates for E1, E2 and E3.
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lem:7.6 Lemma 7.6. For any u ∈ H1(R3,C), E1, E2 and E3 satisfy the estimates:

|E1(u)| ≤ C
m∑
i=1

αi|Ωi|
5
6 ‖∇S0(u)‖2,

|E2(u)| ≤ C
m∑
i=1

αiD(Ωi)‖∇S0(u)‖2,

|E3(u)| ≤ C
m∑
i=1

αiD(Ωi)‖∇S0(u)‖2,

where C > 0 is a constant independent of Ωi.

Proof. First we observe that

|E1(u)| ≤ 1

4

m∑
i=1

αi

∫
Ωi

|S0(u)| dx ≤ 1

4

m∑
i=1

αi

(∫
Ωi

|S0(u)|6 dx
) 1

6
(∫

Ωi

dx

) 5
6

,

from which the estimate for E1 can be obtained by the Sobolev inequality. Next by Proposition

7.1, the Hölder inequality and the Sobolev inequality, one has

|E2(u)| ≤ 1

2

m∑
i=1

αi

∫
∂Ωi

|S0(u)||x| dSi

≤ 1

2

m∑
i=1

αi

(∫
∂Ωi

|S0(u)|2 dSi
) 1

2
(∫

∂Ωi

|x|2 dSi
) 1

2

≤ 1

2

m∑
i=1

αiLi|∂Ωi|
1
2

(
κ1(Ωi)‖S0(u)‖2L2(Ωi)

+ κ2(Ωi)‖S0(u)‖L2(Ωi)‖∇S0(u)‖L2(Ωi)

) 1
2

≤ 1

2

m∑
i=1

αiLi|∂Ωi|
1
2

(
κ1(Ωi)|Ωi|

2
3 ‖S0(u)‖2L6(R3) + κ2(Ωi)|Ωi|

1
3 ‖S0(u)‖L6(R3)‖∇S0(u)‖L2(R3)

) 1
2

≤ C
m∑
i=1

αiLi|Ωi|
1
6 |∂Ωi|

1
2

(
κ1(Ωi)|Ωi|

1
3 + κ2(Ωi)

) 1
2 ‖∇S0(u)‖L2(R3)

≤ C
m∑
i=1

αiD(Ωi)‖∇S0(u)‖L2(R3).

Similarly, we obtain

|E3(u)| ≤ 1

2

m∑
i=1

αi

∫
∂Ωi

|Hi||S0(u)||x|2 dSi

≤ 1

2

m∑
i=1

αiL
2
i ‖Hi‖L2(∂Ωi)‖S0(u)‖L2(∂Ωi)

≤ C
m∑
i=1

αiL
2
i ‖Hi‖L2(∂Ωi)|Ωi|

1
6

(
κ1(Ωi)|Ωi|

1
3 + κ2(Ωi)

) 1
2 ‖∇S0(u)‖L2(R3)

≤ C
∑
i=1

αiD(Ωi)‖∇S0(u)‖L2(R3).

This completes the proof. �

Our next step is to modify the proof of the energy inequality in Lemma 3.7. For this purpose,

we prove the following.
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lem:7.7 Lemma 7.7. Let Ω ⊂ R3 be a bounded domain with smooth boundary and put

Ω(t) :=

∫
tΩ
S0(u)(x) dx = t3

∫
Ω
S0(u)(ty) dy.

Then it holds that

Ω′(t) = t2
∫
∂Ω
S0(u)(ty)(y · n) dS,

Ω′′(t) = −2t

∫
∂Ω
S0(u)(ty)(y · n) dS − t

∫
∂Ω
H(y)S0(u)(ty)(y · n)2 dS.

Proof. First we observe that

Ω′(t) = 3t2
∫

Ω
S0(u)(ty) dy + t2

∫
Ω
∇yS0(u)(ty) · y dy

= 3t2
∫

Ω
S0(u)(ty) dy + t2

∫
Ω

divy
(
S0(u)(ty)y

)
dy − t2

∫
Ω
S0(u)(ty) divy y dy

= t2
∫
∂Ω
S0(u)(ty)(y · n) dS.

Similarly by the surface divergence theorem, one has

Ω′′(t) = 2t

∫
∂Ω
S0(u)(ty)(y · n) dS + t

∫
∂Ω
∇yS0(u)(ty) · y(y · n) dS

= 2t

∫
∂Ω
S0(u)(ty)(y · n) dS

+ t

∫
∂Ω

divy
(
S0(u)(ty)(y · n)y

)
dS − t

∫
∂Ω
S0(u)(ty) divy

(
(y · n)y

)
dS

= 2t

∫
∂Ω
S0(u)(ty)(y · n) dS − t

∫
∂Ω
H(y)S0(u)(ty)(y · n)2 dS

− t
∫
∂Ω
S0(u)(ty) divy y(y · n) dS − t

∫
∂Ω
S0(u)(ty)y · ∇y(y · n) dS

= −2t

∫
∂Ω
S0(u)(ty)(y · n) dS − t

∫
∂Ω
H(y)S0(u)(ty)(y · n)2 dS.

This completes the proof. �

rem:7.8 Remark 7.8. Lemma 7.7 is related with the �calculus of moving surfaces� due to Hadamard;

see [20, (38)-(39)].

Using Lemma 7.6 and Lemma 7.7, we can establish the energy identity as follows.

lem:7.9 Lemma 7.9. Suppose that 2 < p < 5 and let ut(x) = t2u(tx) for t > 0. Under the assumption

(7.1), there exist α > 0, β > 0, ρ0 > 0 independent of e, ρ, t such that if ‖u‖p+1 ≥ δ for some

δ > 0 independent of e, ρ and e2
m∑
i=1

αiD(Ωi) ≤ ρ0, then the following estimate holds.

I(u)− I(ut)−
1− t3

3
J(u) ≥ (1− t)2ω

6
‖u‖22 +

αδp−1

12(p+ 1)
(1− t)2‖u‖2p+1 for all t > 0.
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Proof. Under the notation of Lemma 7.7, we can write the remainder term R(t) as follows:

R(t) =
8− 2t3

3
e2E1(u)− 1− t3

3
e2E2(u) +

e2t−1

2

∫
R3

S0(u)ρ(t−1x) dx

= e2
m∑
i=1

αi

{
−4− t3

6

∫
Ωi

S0(u) dx+
1− t3

6

∫
∂Ωi

S0(u)x · ndSi +
t−1

2

∫
tΩi

S0(u) dx

}

= e2
m∑
i=1

αi

{
t3 − 1

6

(
Ωi(1)− Ω′i(1)

)
− Ωi(1)

2
+

Ωi(t)

2t

}
.

Let T ≥ 4 be chosen so that T 2p−4 ≥ 3 and put

G(t) :=
t3 − 1

6

(
Ωi(1)− Ω′i(1)

)
− Ωi(1)

2
+

Ωi(t)

2t
.

For t ≥ T , it follows that

G(t) ≥ − t
3 − 1

6

(
|Ωi(1)|+ |Ω′i(1)|

)
− 1

2
|Ωi(1)| ≥ −t3

(
2

3
|Ωi(1)|+ 1

6
|Ω′i(1)|

)
.

Similarly one has

G(t) ≥ −
(

2

3
|Ωi(1)|+ 1

6
|Ω′i(1)|

)
≥ −4(1− t)2

(
2

3
|Ωi(1)|+ 1

6
|Ω′i(1)|

)
for 0 ≤ t ≤ 1

2
.

When 1
2 ≤ t ≤ T , we see that G(1) = G′(1) = 0 and

G′′(t) = t
(
Ωi(1)− Ω′i(1)

)
+

1

t3

(
Ω′i(t)− tΩ′i(t) +

t2

2
Ω′′i (t)

)
≥ −t

(
|Ωi(1)|+ |Ω′i(1)|

)
− 1

t3

(
|Ωi(t)|+ t|Ω′i(t)|+

t2

2
|Ω′′i (t)|

)
=: −Ñ(t).

Then by the Taylor theorem, there exists ξ = ξ(t) ∈
(

1
2 , T

)
such that

G(t) ≥ −1

2
Ñ(ξ)(1− t)2 for

1

2
≤ t ≤ T.

Now by Proposition 7.1 and Lemma 7.7, arguing similarly as Lemma 7.6, one �nds that

|Ωi(t)|
t3

≤
∫

Ωi

|S0(u)(ty)| dy ≤ |Ωi|
5
6 ‖S0(u)(ty)‖L6(R3) ≤ Ct−

1
2D(Ωi)‖∇S0(u)‖L2(R3),

|Ω′i(t)|
t2

≤
∫
∂Ωi

|S0(u)(ty)||y| dS ≤ Ct−
1
2D(Ωi)‖∇S0(u)‖L2(R3),

|Ω′′i (t)|
t

≤ 2

∫
∂Ωi

|S0(u)(ty)||y| dS +

∫
∂Ωi

|Hi(y)||S0(u)(ty)||y|2 dS ≤ Ct−
1
2D(Ωi)‖∇S0(u)‖L2(R3).

Then by Lemma 2.2, we have

Ñ(ξ) ≤ T
(
|Ωi(1)|+ |Ω′i(1)|

)
+
√

2
(
CD(Ωi)‖∇S0(u)‖L2(R3)

)
≤ CD(Ωi)

(
‖u‖22 + ‖u‖2p+1

)
and hence

R(t) ≥


−β(1− t)2e2

m∑
i=1

αiD(Ωi)
(
‖u‖22 + ‖u‖2p2+1

)
for 0 ≤ t ≤ T,

−βt3e2
m∑
i=1

αiD(Ωi)
(
‖u‖22 + ‖u‖2p+1

)
for t ≥ T,

for some β > 0 independent of e, ρ, t. The remaining parts can be shown in the same way as

Lemma 3.7. �
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Proof of Theorem 7.3. By Lemma 7.5, Lemma 7.6 and Lemma 7.9, we are able to modify the

proofs in Sections 3-5. �
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