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Abstract

The aim of this paper is to present a Boltzmann type model that describes a collective behavior of
a large group of individuals. The model considers a mechanism where as two individuals collide, they
adopt after the collision the same post-collisional velocity according to a distribution centered at
the mid pre-collisional velocity. We show in this paper that the solutions of a spatially homogeneous
model on Rd converge exponentially towards the equilibrium state for the Wasserstein metric. The
convergence of the solutions in the strong-norm L1 is also proved for initial conditions satisfying a
stronger regularity property. In a last part, these results are illustrated numerically.

1 Introduction

We consider a group of individuals subject to a social interaction. For this, we consider a Boltzmann
type model introduced by Bertin, Droz, Gregoire [2], [3]. In the BDG model, each individual (bird,
fish, rod,...) moves independently from the others outside the collisions and are indistinguishable. At
the time of the collision if two individuals are close enough, then they will line up in velocity. For each
t ≥ 0, the evolution of the collective behavior is represented by a probability distribution ft = f(t, x, v)
where x denotes the position, and v denotes the velocity of the individuals. The two post-collisional
velocities v, v? adopted by the two individuals are equal after the collision v = v?, and randomly
distributed according to a probability K( · , v′, v′?) centered at the mid pre-collisional velocity v′+v′?

2 . In
general, the collision rate is represented by a function β(v′ − v′?) taking its values close to 1 if the two
individuals are almost aligned before the collision and taking its values close to 0 in the case of grazing
collisions. The model may also take into account a velocity confinment as in [5]. In [12] Raoul studies
a similar model. The population of the individuals is structured by a continuous one-dimensional trait.
At the time two individuals meet, they interact sexually and the trait of the offspring is distributed
according to a Gaussian measure centered at the mid trait of the parents.

The present paper deals with a simplified version of the BDG model: the density f is independent
of the position of the individuals, the velocity is d-dimensional, and the collision rate β is constant
equal to 1, the so-called Maxwellian case. In [2], [3], [4], the dimension d of the space of velocities is
equal to 1, in [8], the space of velocities may be a manifold of any dimension d ≥ 1, but the probability
K(dv, v′, v′?) = δ(v′+v′?)/2(dv) must be a Dirac mass at the mid velocity. Our results are more general
in the sense that they are valid in any dimension and for any distribution K(dv, v′, v′?). However the
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technique of proofs we use assume that the space of velocities is euclidean. A model where the velocity
is constrained to be of norm 1 as in [8] is out of reached by our methods.

For general collision rate, the unknown probability distribution f satisfies the following Boltzmann
like equation in the sense of distributions:

∂f

∂t
= Q(f, f) = Q+(f, f)−Q−(f, f), (1.1)

where Q(f, f) is the collision operator which is decomposed into a gain term Q+(f, f) and a loss term
Q−(f, f). For any test function ϕ ∈ C∞(R× Rd) with compact support,

〈Q+(f, f), ϕ〉 :=

∫ +∞

0

∫
Rd

∫
Rd

∫
Rd

ϕ(t, v)K(dv, v′, v′?)β(v′ − v′?)f(t, dv′)f(t, dv′?)dt (1.2)

and

〈Q−(f, f), ϕ〉 :=

∫ +∞

0

∫
Rd

∫
Rd

ϕ(t, v)β(v − v′)f(t, dv)f(t, dv′)dt. (1.3)

In ref. [8], the model (1.1) is studied when β = 1 and K( · , v′, v′?) = δ(v′+v′?)/2. This model is called
the discrete midpoint model. In ref. [2], [3], [4], the dimension of the velocity is d = 1, the direction
taken after the collision is chosen according to a density probability distribution centered at the mean
(v′ + v′?)/2. This model is called the continuous midpoint model. In a probabilistic framework, in
both cases, the velocity after the collision is written under the form v = (v′ + v′?)/2 +X where X is a
random variable of law g, considered discrete or continuous.

We choose from now on any probability g(dv) with zero mean on Rd, for example g = δ0 in ref. [8],
or g(v)dv, a density with respect to the Lebesgue measure as in ref. [4]. The model considered in this
paper is given by the following kernel K and collision rate β,

K(dv, v′, v′?) :=

(
τ

[
v′ + v′?

2

]
#g

)
(dv) and β(v) = 1.

We have denoted by τ [u] : v 7−→ v+u the translation by u, by τ [u]#g the push forward of the measure
g by τ [u], that is, for any bounded mesurable function ϕ,∫

ϕ(v)(τ [u]#g)(dv) :=

∫
ϕ ◦ τ [u](v)g(dv).

For every α > 0, let Pα(Rd) be the set of probability measures on Rd admitting a finite moment of
order α. We recall the notion of a moment of order α > 0 of a measure µ ∈ Pα(Rd)

Mα(µ) :=

∫
Rd

|v|αdµ(v).

For α > 1 and m ∈ Rd, let Pmα (Rd) be the set of measures µ ∈ Pα(Rd) such that∫
Rd

vdµ(v) = m.

Let g ∈ P0
2 (Rd) and f0 ∈ Pm2 (Rd). The evolution equation (1.1) becomes

∂f

∂t
=

∫∫
Rd×Rd

(
τ

[
v′ + v′?

2

]
#g

)
f(t, dv′)f(t, dv′?)− f(t, · )

∫
Rd

f(t, dv′)

f(0, · ) = f0.

(1.4)
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For µ, ν ∈ P2(Rd), we define the Wasserstein metric W2 by

W2(µ, ν) :=

√
inf
π∈Π

∫∫
Rd×Rd

|x− y|2dπ(x, y)

where Π denotes the set of couplings of (µ, ν). Recall that a sequence of measures (µn)n in P2(Rd)
converges to a measure µ ∈ P2(Rd) for the distance W2 if and only if

(µn)n
weak∗→ µ and lim

n→+∞

∫
Rd

|x|2dµn(x) =

∫
Rd

|x|2dµ(x).

Therefore, W2 metrizes the weak topology on P2(Rd) and makes that space complete (Definition 6.8,
Theorems 6.9 and 6.18 in ref. [15]). This will allow us to etablish the existence of solutions for the
equation (1.4). We define a solution in the sense of distributions as follows

Definition 1.1. Let f ∈ C0(R+,P2(Rd)) and f0 ∈ P2(Rd). For any test function ϕ ∈ C∞(R×Rd) with
compact support, we define

〈f, ϕ〉 :=

∫ +∞

0

∫
Rd

ϕ(t, v)f(t, dv)dt.

A solution of the equation (1.4) in the sense of distributions is a measured-valued function f ∈
C0(R+,P2(Rd)) satisfying for every test function ϕ ∈ C∞(R× Rd) with compact support

−
〈
f,
∂ϕ

∂t

〉
=

∫
Rd

ϕ(0, v)f0(dv) + 〈Q+(f, f), ϕ〉 − 〈Q−(f, f), ϕ〉. (1.5)

We define a second notion of mild solution as follows.

Definition 1.2. A mild solution of the equation (1.4) is a function f ∈ C0(R+,P2(Rd)) taking values
in the space of probability measures equipped with the Wasserstein metric W2 satisfying for all t ≥ 0

f(t, · ) = e−tf0 +

∫ t

0

∫
Rd

∫
Rd

e−(t−s)
(
τ

[
v′ + v′?

2

]
#g

)
f(s, dv′)f(s, dv′?)ds. (1.6)

The notion of mild solution is stronger than the notion of solution in the sense of distribution.
We will prove the existence as well as the uniqueness of mild solutions by using a fixed point type
argument.

We consider next the equilibrium states of the collision operator Q corresponding to probability
measures f satisfying Q(f, f) = 0. We will mainly focus on the convergence to the unique equilibrium
state of the equation (1.4) that is defined as follows.

Definition 1.3. An equilibrium state of the equation (1.4) is a probability distribution f ∈ P2(Rd)
satisfying the fixed point equation

f =

∫∫
Rd×Rd

(
τ

[
v′ + v′?

2

]
#g

)
f(dv′)f(dv′?). (1.7)

We will show the existence and uniqueness of the equilibrium state by using a fixed point type
argument. The main result of this paper concerns the exponential convergence of the solution of (1.4)
towards the equilibrium state for the Wasserstein metric W2 and for the strong-norm L1. We will also
make the link with the convergence result of the discrete midpoint model in ref. [8].

Theorem 1.1. Let m ∈ Rd, f0 ∈ Pm2 (Rd) and g ∈ P0
2 (Rd).
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(1) There exists a unique mild solution f ∈ C0(R+,P2(Rd)) to the equation (1.4) with f(0, · ) = f0.
Moreover, we have for all t ≥ 0∫

Rd

vf(t, dv) =

∫
Rd

vf0(dv) := m.

(2) There exists a unique equilibrium state f∞m ∈ Pm2 (Rd), that is a probability measure f∞m satisfying

Q(f∞m , f
∞
m ) = 0.

(3) For all t ≥ 0

W2(f(t, · ), f∞m ) ≤ e−t/4W2(f0, f
∞
m ). (1.8)

(4) If f0 ∈ Hs(Rd) ∩ Pm2 (Rd) and g ∈ Hs(Rd) ∩ P0
2 (Rd) are densities with s > 2 + d/2, then there

exists a constant C > 0 explicitly computable such that for all t ≥ 0

‖f(t, · )− f∞m ‖L1(Rd) ≤ Ce−t/(d+4). (1.9)

Results close to item (2) are present in ref. [4] and in Lemma 2.2 in ref. [12] (the model is different
and g is Gaussian). Item (3) is similar to step two of the proof of Lemma 2.1 in ref. [12]. The author
shows a perturbation result about the a Gaussian solution; we show an exponential convergence to an
equilibrium state which may be non Gaussian. Our result is also valid in any dimension.

To prove (4) of theorem 1.1, we control the strong-norm L1 by the Fourier-Toscani-based distance d2

introduced in Carrillo, Toscani [7] and Toscani, Villani [13]. Then we show that the solution converges
exponentially towards the equilibrium state of Q(f, f) defined in (1.1, 1.2, 1.3) for the distance d2. To
bound the L1 norm by the distance d2, an estimate on the Sobolev norm ‖ ·‖Hs(Rd) is needed for s ≥ 0.

This model is new and interesting because it is located at the interface between collective dynamics
and kinetic theory. The transport equation has no forcing or diffusion term in velocity, the change
of velocity is computed as in Boltzmann framework. As the collisions are not micro-reversible, it is
not obvious to find an entropy functional. In the Boltzmann equations, micro-reversibility is a crucial
element for obtaining theH Theorem. Consequently, the classical tools for dealing with the problems of
returns to equilibrium, such as for example the Csiszàr-Kullback-Pinsker inequality [9], are inoperative.
In our case, we have instead a phenomenon of contraction in the collision process which does not take
place for the Boltzmann operator but drives the density towards an equilibrium state.

The plan of this paper is the following. We start by establishing the existence of a mild solution
of the equation (1.4). We show item (1) of Theorem 1.1 in section 2. We show the existence of the
equilibrium state, item (2), and the proof of convergence, item (3) of Theorem 1.1 in section 3. We
also make the link with the midpoint model in this same section. Then, we show the exponential
convergence of the solution towards the equilibrium state for the distance d2 in section 4, which will
imply the convergence in L1, item (4) of Theorem 1.1 in section 5. The last section is devoted to
numerical simulations in dimension 1.

2 Existence

For all t ≥ 0, we denote by ρ(t), u(t) and Σf (t) the mass, bulk velocity and covariance matrix at the
instant t of the solution f . Note that the equation (1.4) can be written equivently as

∂f

∂t
= g ∗ (U#f(t, · )) ∗ (U#f(t, · ))− ρ(t)f(t, · ) (2.1)
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with

U : v ∈ Rd 7−→ v

2
∈ Rd. (2.2)

Indeed by definition of the convolution product we have for any test function ϕ ∈ C∞c (R× Rd)

〈g ∗ (U#f) ∗ (U#f), ϕ〉 =

∫ +∞

0

∫
Rd

ϕ(t, v)g ∗ (U#f(t, · )) ∗ (U#f(t, · ))(dv)dt

=

∫ +∞

0

∫∫∫
Rd×Rd×Rd

ϕ(t, v + v′ + v′?)g(dv)(U#f(t, · ))(dv′)(U#f(t, · ))(dv′?)dt

=

∫ +∞

0

∫∫∫
Rd×Rd×Rd

ϕ

(
t, v +

v′ + v′?
2

)
g(dv)f(t, dv′)f(t, dv′?)dt

=

∫ +∞

0

∫∫∫
Rd×Rd×Rd

ϕ(t, v)(τ(v′+v′?)/2#g)(dv)f(t, dv′)f(t, dv′?)dt

= 〈Q+(f, f), ϕ〉.

By direct computation, we have (with the notations v tv = (vivj)1≤i,j≤d)

∫
Rd

 1
v
v tv

 g ∗ (U#f(t, · )) ∗ (U#f(t, · ))(dv) =

 ρ(t)2

ρ(t)u(t)

ρ(t)2(Σg + u(t) tu(t)) + Σf (t)/(2ρ(t)).

 . (2.3)

The previous computation shows that the mass and the mean velocity are preserved, but not the
energy. Note that the gain term Q+(f, f) is a density if g is a density (even if f is a probability
measure).

We start by proving item (1) of Theorem 1.1. Some properties on W2 are needed first.

Proposition 2.1 (Properties of W2).

(1) Convexity. Given µ1, µ2, ν1 and ν2 in P2(Rd) and α ∈ [0, 1], then

W2(αµ1 + (1− α)µ2, αν1 + (1− α)ν2)2 ≤ αW2(µ1, ν1)2 + (1− α)W2(µ2, ν2)2. (2.4)

(2) Convexity with respect to transition kernel. Let P1 : v ∈ Rd 7−→ P1(v, · ) ∈ P2(Rd) and
P2 : v ∈ Rd 7−→ P2(v, · ) ∈ P2(Rd) be two transition kernels (that is Borel maps in (P2(Rd),W2))
and µ be a probability measure, then

W2

(∫
Rd

P1(v, · )dµ(v),

∫
Rd

P2(v, · )dµ(v)

)2

≤
∫

Rd

W2(P1(v, · ), P2(v, · ))2dµ(v). (2.5)

(3) Sub-additivity with respect to convolution. Given µ1, ν1 ∈ Pm2 (Rd) and µ2, ν2 ∈ P2(Rd),
then

W2(µ1 ∗ µ2, ν1 ∗ ν2)2 ≤W2(µ1, ν1)2 +W2(µ2, ν2)2. (2.6)

(Notice that µ1 and ν1 must have the same mean value.)

(4) Transfert. Given µ, ν ∈ P2(Rd) and f : Rd −→ Rd a Borel map, then for all coupling π of
(µ, ν),

W2(f#µ, f#ν)2 ≤
∫∫

Rd×Rd

|f(x)− f(y)|2dπ(x, y). (2.7)
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For the sake of completeness we give the proof of the previous proposition in Appendix A.

Remark 2.1. If ϕ ∈ C0([0, T ]) is a function such that
∫ T

0 ϕ(t)dt = 1 and if f1, f2 ∈ C0(R+,P2(Rd)),
then we obtain by (2.5)

W2

(∫ T

0
ϕ(t)f1(t, · )dt,

∫ T

0
ϕ(t)f2(t, · )dt

)2

≤
∫ T

0
ϕ(t)W2(f1(t, · ), f2(t, · ))2dt. (2.8)

Remark 2.2. By taking µ1 = ν1 in (2.6), we have

W2(µ1 ∗ µ2, µ1 ∗ ν2)2 ≤W2(µ1, µ1)2 +W2(µ2, ν2)2 = W2(µ2, ν2)2.

And so we obtain for µ1, µ2, ν ∈ P2(Rd)

W2(ν ∗ µ1, ν ∗ µ2) ≤W2(µ1, µ2). (2.9)

Note that it is not necessary that µ1, µ2 and ν have the same mean.

Remark 2.3. Inequality (2.7) gives with U defined in equation (2.2),

W2(U#µ,U#ν)2 ≤ 1

4

∫∫
Rd×Rd

|x− y|2dπ(x, y)

for all coupling π of (µ, ν). Therefore by taking the infimum over π, we obtain

W2(U#µ,U#ν) ≤ 1

2
W2(µ, ν). (2.10)

The following Lemma is the key step for the fixed point theorem of Theorem 1.1.

Lemma 2.1. For µ, ν ∈ Pm2 (Rd), we have

W2(g ∗ (U#µ) ∗ (U#µ), g ∗ (U#ν) ∗ (U#ν)) ≤ 1√
2
W2(µ, ν). (2.11)

Proof. It is enough to apply successively (2.9), (2.6) and (2.10). We have

W2(g ∗ (U#µ) ∗ (U#µ), g ∗ (U#ν) ∗ (U#ν)) ≤W2((U#µ) ∗ (U#µ), (U#ν) ∗ (U#ν))

≤
√

2W2(U#µ,U#ν)

≤ 1√
2
W2(µ, ν)

�

This result is already present in Theorem 4.1 in ref. [11]. The proof presented here is different. We
recall the following elementary fact that we prove in Appendix A.

Lemma 2.2. The space Pm2 (Rd) is a complete metric space for W2.

The following Lemma shows that a mild solution can be seen as a fixed point of some contracting
non-linear operator.

Lemma 2.3. Let m ∈ Rd, f0 ∈ Pm2 (Rd) and g ∈ P0
2 (Rd). Define Ef0 = C0(R+,Pm2 (Rd)) with

f(0, .) = f0 equipped with the uniform norm. For f ∈ Ef0, we define the map Φ : Ef0 −→ Ef0 by

Φ[f ](t, · ) := e−tf(0, · ) +

∫ t

0
e−(t−s)g ∗ (U#f(s, · )) ∗ (U#f(s, · ))ds. (2.12)

Then for all f1
0 , f

2
0 ∈ Pm2 (Rd) and for f1 ∈ Ef10 , f

2 ∈ Ef20 , it holds for every t ≥ 0

W2(Φ[f1](t, · ),Φ[f2](t, · ))2 ≤ e−tW2(f1
0 , f

2
0 )2 +

1

2

∫ t

0
e−(t−s)W2(f1(s, · ), f2(s, · ))2ds. (2.13)
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Proof. Let f ∈ Ef0 . It is clear that Φ[f ](0, · ) = f0. Since for all t ≥ 0, f(t, · ) ∈ Pm2 (Rd), ρ(t) = 1
and u(t) = m. So, by (2.3), Φ[f ](t, · ) ∈ Pm2 (Rd) for all t ≥ 0. By writing

Φ[f ](t, · ) = e−tf0 + (1− e−t)
∫ t

0

e−(t−s)

1− e−t
g ∗ (U#f(s, · )) ∗ (U#f(s, · ))ds,

the convexity of W2 (2.4) gives that for all f1 ∈ Ef10 , f
2 ∈ Ef20 ,

W2(Φ[f1](t, · ),Φ[f2](t, · ))2 ≤ e−tW2(f1
0 , f

2
0 )2

+ (1− e−t)W2

(∫ t

0

e−(t−s)

1− e−t
g ∗ (U#f1

s ) ∗ (U#f1
s )ds,

∫ t

0

e−(t−s)

1− e−t
g ∗ (U#f2

s ) ∗ (U#f2
s )ds

)2

.

And using (2.8), it holds that

W2(Φ[f1](t, · ),Φ[f2](t, · ))2 ≤
∫ t

0
e−(t−s)W2(g ∗ (U#f1

s ) ∗ (U#f1
s ), g ∗ (U#f2

s ) ∗ (U#f2
s ))2ds

+ e−tW2(f1
0 , f

2
0 )2.

And by (2.11), we obtain (2.13). �

To prove Lemma 2.3, we used arguments that are used several times in ref. [12].

Proof of item (1) in Theorem 1.1. Let f0 ∈ Pm2 (Rd) and g ∈ P0
2 (Rd). Consider the map Φ defined

by (2.12). Hence for f1, f2 ∈ Ef0 , (2.13) leads to

W2(Φ[f1](t, · ),Φ[f2](t, · ))2 ≤ 1

2

∫ t

0
e−(t−s)W2(f1(s, · ), f2(s, · ))2ds.

By considering the supremum in time,

W2(Φ[f1](t, · ),Φ[f2](t, · ))2 ≤ 1− e−t

2
sup
t∈R+

W2(f1(t, · ), f2(t, · ))2.

So

sup
t∈R+

W2(Φ[f1](t, · ),Φ[f2](t, · )) ≤ 1√
2

sup
t∈R+

W2(f1(t, · ), f2(t, · )). (2.14)

Hence Φ preserves the space Ef0 and is a contraction. As Pm2 (Rd) is a complete metric space for W2,
Ef0 is complete. Hence there exists a unique mild solution of the equation (1.4) belonging to Ef0 . �

Proposition 2.2 (Properties of mild solutions). Let m ∈ Rd, f ∈ C0(R+,Pm2 (Rd)) be the mild solution
of equation (1.4) with f(0, · ) = f0. Then we have the following properties.

(1) f is a solution of equation (1.4) in the sense of distributions (see Definition 1.1).

(2) If f0 and g are probability densities, then f(t, · ) is a probability density for all t ≥ 0.

(3) For all t ≥ 0, denoting Σf (t) :=
∫

Rd(v −m) t(v −m)f(t, dv),

Σf (t) = e−t/2Σf (0) + 2(1− e−t/2)Σg. (2.15)

(4) For every mild solution f1, f2 ∈ C0(R+,Pm2 (Rd)), we have for all t ≥ 0

W2(f1(t, · ), f2(t, · )) ≤ e−t/4W2(f1(0, · ), f2(0, · )). (2.16)
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Proof. Item (1). By direct computation

−
〈
f,
∂ϕ

∂t

〉
=

∫
Rd

ϕ(0, v)f0(dv)−
∫ +∞

0

∫
Rd

e−tϕ(t, v)f0(dv)dt

−
∫ +∞

0

∫
Rd

es
(∫ +∞

s
e−t

∂ϕ

∂t
(t, v)dt

)
g ∗ (U#f(s, · )) ∗ (U#f(s, · ))(dv)ds

=

∫
Rd

ϕ(0, v)f0(dv)−
∫ +∞

0

∫
Rd

e−tϕ(t, v)f0(dv)dt

+

∫ +∞

0

∫
Rd

ϕ(s, v)g ∗ (U#f(s, · )) ∗ (U#f(s, · ))(dv)ds

−
∫ +∞

0

∫
Rd

∫ +∞

s
ϕ(t, v)e−(t−s)g ∗ (U#f(s, · )) ∗ (U#f(s, · ))(dv)dtds

=

∫
Rd

ϕ(0, v)f0(dv) + 〈Q+(f, f), ϕ〉 −
∫ +∞

0

∫
Rd

ϕ(t, v)f(t, dv)dt.

Since for any t ≥ 0, f(t, · ) is a probability measure, we have∫ +∞

0

∫
Rd

ϕ(t, v)f(t, dv)dt =

∫ +∞

0

∫
Rd

∫
Rd

ϕ(t, v)f(t, dv)f(t, dv?)dt = 〈Q−(f, f), ϕ〉.

Item (2). This is obvious because if g is a density, then g ∗ (U#f(t, · )) ∗ (U#f(t, · )) is a density for
all t ≥ 0. By (1.6), we obtain that f(t, · ) is a density for all t since f0 is a density by hypothesis.

Item (3). According to (1.6) and (2.3), it holds that∫
Rd

v tvf(t, dv) = e−t
∫

Rd

v tvf0(dv) +

∫ t

0
e−(t−s)

(∫
Rd

v tvg ∗ (U#f(s, · )) ∗ (U#f(s, · ))(dv)

)
ds

= e−t
∫

Rd

v tvf0(dv) +

∫ t

0
e−(t−s)

(
Σg +m tm+

Σf (s)

2

)
ds.

So we have

etΣf (t) = Σf (0) + (1− e−t)Σg +

∫ t

0

es

2
Σf (s)ds.

The case of equality in Gronwall’s lemma leads to

etΣf (t) = Σf (0) + (1− e−t)Σg +

∫ t

0

Σf (0) + (1− e−s)Σg

2
e(t−s)/2ds

= Σf (0) + (1− e−t)Σg + (et/2 − 1)Σf (0) + (et + 1 + 2et/2)Σg.

Which implies formula (2.15).

Item (4). Let f1 ∈ C0(R+,Pm2 (Rd)) be the mild solution with initial condition f1
0 ∈ Pm2 (Rd) and let

f2 ∈ C0(R+,Pm2 (Rd)) be the mild solution with initial condition f2
0 ∈ Pm2 (Rd). By (2.13), it comes that

W2(f1(t, · ), f2(t, · ))2 ≤ e−tW2(f1
0 , f

2
0 )2 +

1

2

∫ t

0
e−(t−s)W2(f1(s, · ), f2(s, · ))2ds.

Gronwall’s Lemma leads to

etW2(f1(t, · ), f2(t, · ))2 ≤ et/2W2(f1
0 , f

2
0 )2

and (2.16) follows. �
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3 Equilibrium state

This section is devoted to the determination of the equilibrium state of the collision operator of equation
(1.4). For f ∈ C0(R+,P2(Rd)), we set

f̂(t, ξ) :=

∫
Rd

e−i〈v,ξ〉f(t, dv).

So if f ∈ C0(R+,Pm2 (Rd)) is the mild solution of equation (1.4) (see Definition 1.2) with initial condition
f(0, · ) = f0, then f̂ is solution of the fixed point equation

f̂(t, ξ) = e−tf̂(0, ξ) +

∫ t

0
e−(t−s)ĝ(ξ)f̂

(
s,
ξ

2

)2

ds. (3.1)

Note that the changeover in Fourier variable can be performed because β is constant. By differentiation
of (3.1), it comes that 

∂f̂

∂t
= ĝ(ξ)f̂

(
t,
ξ

2

)2

− f̂(t, ξ)

f̂(0, ξ) = f̂0(ξ).

(3.2)

We notice that equation (1.7) can be written equivalently as

f = g ∗ (U#f) ∗ (U#f)

where U is defined in (2.2). Thus, equation (1.7) is equivalent to

f̂(ξ) = ĝ(ξ)f̂

(
ξ

2

)2

. (3.3)

Item (2) of Theorem 1.1 is a consequence of the following proposition. Theorem 1 of ref. [4] is
improved by choosing a probability measure g(dv) instead of a density g(v)dv and by proving the
uniqueness of the equilibrium state in this general setting. Moreover we do not use Levi’s Theorem to
recognize a Fourier transform of a probability measure.

Proposition 3.1 (Theorem 1 in ref. [4]). Let g ∈ P0
2 (Rd). For all m ∈ Rd, there exists a unique

f ∈ Pm2 (Rd) solution of (1.7). In addition we have

f̂(ξ) = e−i〈m,ξ〉
+∞∏
n=0

ĝ

(
ξ

2n

)2n

. (3.4)

Proof. For f ∈ Pm2 (Rd), we define the map Φ : P2(Rd) −→ P2(Rd) by

Φ[f ] := g ∗ (U#f) ∗ (U#f).

By (2.3), we check that Φ maps Pm2 (Rd) into itself and is a contraction from (2.11). So there exists
a unique f ∈ Pm2 (Rd) such that Φ[f ] = f . Let us now show that f̂ satisfies (3.4). By iterating the
equation (3.3), a Taylor expansion leads to

f̂(ξ) =

[
n−1∏
k=0

ĝ

(
ξ

2k

)2k
]
f̂

(
ξ

2n

)2n

=

[
n−1∏
k=0

ĝ

(
ξ

2k

)2k
](

1 +
1

2n

(
−i〈m, ξ〉 −

tξ(Σf +m tm)ξ

2n+1
+ o

(
|ξ|2

2n

)))2n

.

The second factor on the right-hand side converges to e−i〈m,ξ〉 when n tends to infinity. Since if (xn)n
converges to x, then (1+xn/n)n converges to ex. We thus obtain (3.4) by letting n tend to infinity. �
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We denotes by f∞m (which is a density if g is a density) the unique solution of (1.7) in Pm2 (Rd). In
particular, f̂∞m satisfies (3.4).

Remark 3.1. Letm = 0. By calculating the Hessian matrix Hf̂∞0
(0), we notice that if f ∈ C0(R+,Pm2 (Rd))

is the mild solution of equation (1.4), then by (2.15), Σf (t) converges to 2Σg when t goes to infinity.
Which corresponds well to the covariance matrix of f∞0 .

Indeed, by differentiating the function ξ 7−→ log(f̂∞0 (ξ)), we have since f̂∞0 satisfies (3.4) than

∇f̂∞0 (ξ) = f̂∞0 (ξ)

+∞∑
n=0

∇ĝ(ξ/2n)

ĝ(ξ/2n)
.

By differentiating the previous formula, we have

Hf̂∞0
(ξ) = f̂∞0 (ξ)

+∞∑
n=0

ĝ(ξ/2n)Hĝ(ξ/2
n)−∇ĝ(ξ/2n) t∇ĝ(ξ/2n)

2n(ĝ(ξ/2n))2
+∇f̂∞m (ξ)

t(+∞∑
n=0

∇ĝ(ξ/2n)

ĝ(ξ/2n)

)
.

We obtain the covariance matrix of f∞0 by calculating this expression above at ξ = 0 since for a centered
probability measure µ, µ̂(0) = 1, i∇µ̂(0) = 0, and −Hµ̂(0) =

∫
v tvdµ(v).

Remark 3.2. In the particular case where g ∈ P0
2 (Rd) is a Gaussian (centered of covariance matrix

Σg), then ĝ(ξ) = exp(−(tξΣgξ)/2) and by (3.4),

f̂∞m (ξ) = e−i〈m,ξ〉
+∞∏
n=0

exp

(
−
tξΣgv

2n+1

)
= exp

(
−i〈m, ξ〉 −

tξΣgξ

2

+∞∑
n=0

1

2n

)
= exp

(
−i〈m, ξ〉 − tξΣgξ

)
.

So by the Fourier inverse transform, f∞m is also a Gaussian with mean vector m and covariance matrix
2Σg.

Proof of items (2) and (3) in Theorem 1.1. Item (2) Readily follows form Proposition 3.1.

Item (3). Let f ∈ C0(R+,Pm2 (Rd)) be the mild solution of equation (1.4) with initial condition f0 ∈
Pm2 (Rd) and let f∞m ∈ Pm2 (Rd) be the equilibrium state of equation (1.4). Note that

∀t ≥ 0, f∞m = e−tf∞m +

∫ t

0
e−(t−s)g ∗ (U#f∞m ) ∗ (U#f∞m )ds.

By taking the map Φ defined in (2.12), we have by (2.13)

W2(f(t, · ), f∞m )2 = W2(Φ[f ](t, · ),Φ[f∞m ])2

≤ e−tW2(f0, f
∞
m )2 +

1

2

∫ t

0
e−(t−s)W2(f(s, · ), f∞m )2ds.

By Gronwall’s Lemma, we have

etW2(f(t, · ), f∞m )2 ≤ et/2W2(f0, f
∞
m )2

and (1.8) follows. �

We now make the link with the result obtained in ref. [8] for the discrete midpoint model corre-
sponding to the equation (1.4) with g = δ0.

Proposition 3.2 (Proposition 2.3 in ref. [8]). We consider equation (1.4) with g = δ0. For f0 ∈
Pm2 (Rd), there exists a unique mild solution of equation (1.4) in C0(R+,Pm2 (Rd)) with initial condition
f0. Moreover, we have the estimate

W2(f(t, · ), δm) ≤ e−t/4W2(f0, δm). (3.5)
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Proof. Existence and uniqueness of the solution follow from the item (1) in Theorem 1.1. By items
(2) and (3) in Theorem 1.1, there exists a unique equilibrium state f∞m ∈ Pm2 (Rd) such that

W2(f(t, · ), f∞m ) ≤ e−t/4W2(f0, f
∞
m ).

Since g = δ0, we have ĝ(ξ) = 1 for all ξ. And so by (3.4), we have

f̂∞m (ξ) = e−i〈m,ξ〉.

We recognize the Fourier transform of δm, so f∞m = δm and (3.5) follows. �

As mentioned in ref. [8], the conservation of the center of mass m has played a fundamental role in
the functional space Pm2 (Rd). It would be much more difficult to prove these estimates on the sphere
Sd−1 because the center of mass is no longer conserved.

4 Convergence for d2

We introduce in this section the Fourier-Toscani-based distance between µ and ν ∈ Pm2 (Rd) having the
same mean value by

d2(µ, ν) := sup
ξ∈Rd

|µ̂(ξ)− ν̂(ξ)|
|ξ|2

.

A Taylor expansion shows that this metric is well-defined for µ, ν ∈ Pm2 (Rd) and metrizes the weak
topology on Pm2 (Rd) (see ref. [13]). We proved in the previous section that f∞m ∈ Pm2 (Rd). So
d2(f(t, · ), f∞m ) is well defined for all t ≥ 0. The following result gives the exponential convergence of
f(t, · ) to f∞m for the d2 metric.

Proposition 4.1 (Exponential convergence for d2). Let f0 ∈ Pm2 (Rd) and g ∈ P0
2 (Rd). If f ∈

C0(R+,Pm2 (Rd)) is the mild solution of equation (1.4) with f(0, · ) = f0 and if f∞m ∈ Pm2 (Rd) is the
equilibrium state of (1.4) with mean velocity m, then it holds that for all t ≥ 0

d2(f(t, · ), f∞m ) ≤ M2(f0) + 2M2(g) + |m|2

2
e−t/2. (4.1)

Proof. For f ∈ C0(R+,Pm2 (Rd)), mild solution of (1.4), we set for any t ≥ 0 and ξ ∈ R,

H(t, ξ) :=
f̂(t, ξ)− f̂∞m (ξ)

|ξ|2
.

A Taylor expansion gives that

e−i〈v,ξ〉 = 1− i〈v, ξ〉 − 〈v, ξ〉2
∫ 1

0
(1− s)e−is〈v,ξ〉ds.

So

|H(t, ξ)| =
∣∣∣∣∫

Rd

∫ 1

0

〈v, ξ〉2

|ξ|2
(1− s)e−is〈v,ξ〉f(t, v)dsdv −

∫
Rd

∫ 1

0

〈v, ξ〉2

|ξ|2
(1− s)e−is〈v,ξ〉f∞m (v)dsdv

∣∣∣∣
≤
∫

Rd

∫ 1

0

∣∣∣∣〈v, ξ〉2|ξ|2
(1− s)e−is〈v,ξ〉(f(t, v)− f∞m (v))

∣∣∣∣ dsdv.
Hence the previous inequality taken at t = 0 and Cauchy-Schwarz inequality leads to

|H(0, ξ)| ≤ M2(f0) + 2M2(g) + |m|2

2
. (4.2)
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We define now G by

G(t, ξ) :=
ĝ(ξ)

4

(
f̂

(
t,
ξ

2

)
+ f̂∞m

(
ξ

2

))
.

Using (3.2) and (3.3), it holds that

G(t, ξ)H

(
t,
ξ

2

)
−H(t, ξ) =

ĝ(ξ)

|ξ|2
f̂

(
t,
ξ

2

)2

− f̂(t, ξ)

|ξ|2
−
(
ĝ(ξ)

|ξ|2
f̂∞m

(
ξ

2

)
− f∞m (ξ)

|ξ|2

)
=

1

|ξ|2
∂f̂

∂t
.

So H satisfies
∂H

∂t
= G(t, ξ)H

(
t,
ξ

2

)
−H(t, ξ)

and by Duhamel’s formula, we get

H(t, ξ) = e−tH(0, ξ) +

∫ t

0
e−(t−s)G(s, ξ)H

(
s,
ξ

2

)
ds.

For R > 0, we set
y(t) := et sup

|ξ|≤R
|H(t, ξ)|

since the map ξ 7−→ ξ/2 maps {ξ, |ξ| ≤ R} into {ξ, |ξ| ≤ R/2}. Since G(t, ξ) ≤ 1/2, Gronwall’s Lemma
applied to inequality

y(t) ≤ y(0) +
1

2

∫ t

0
y(s)ds

gives that for all R ≥ 0
sup
|ξ|≤R

|H(t, ξ)| ≤ |H(0, ξ)|e−t/2.

So, by using the estimate (4.2) we get formula (4.1). �

5 Convergence L1

This section is devoted to the proof of item (4) in Theorem 1.1. The initial condition f(0, · ) is assumed
to be a regular function and we prove the exponential convergence in L1 of f(t, · ) to the equilibrium
state determined in section 3. The regularity of the initial condition is measured in term of the Sobolev
norm. For s ≥ 0 and for d ∈ N∗, the Sobolev norm in Rd of regularity s is given by

‖f‖Hs(Rd) :=

√∫
Rd

(1 + |ξ|2)s|f̂(ξ)|2dξ.

Lemma 5.1. Let s ≥ 0 and f0, g ∈ Hs(Rd) ∩ P2(Rd). Let f ∈ C0(R+,P2(Rd)) be the mild solution
(1.4) with initial condition f0. Then for every t ≥ 0, f(t, · ) ∈ Hs(Rd) and

‖f(t, · )‖Hs(Rd) ≤ e−t‖f0‖Hs(Rd) + (1− e−t)‖g‖Hs(Rd). (5.1)

Proof. Let R > 0. Define

ZR(t) :=

∫
|ξ|<R

(1 + |ξ|2)s|f̂(t, ξ)|2dξ.
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Using (3.2) and the inequality |µ̂(ξ)| ≤ 1 for µ a probability measure, it comes that ∂tf̂(t, ξ) is uniformly
bounded by 2. By differentiation, it holds that

d

dt
ZR(t) = 2

∫
|ξ|<R

(1 + |ξ|2)s<

(
f̂(t, ξ)

∂f̂

∂t
(t, ξ)

)
dξ

≤ 2

∫
|ξ|<R

(1 + |ξ|2)s|ĝ(ξ)| · |f̂(t, ξ)|dξ − 2ZR(t).

Cauchy-Schwarz inequality applied to the right-hand side gives that

d

dt
ZR(t) ≤ 2‖g‖Hs(Rd)

√
ZR(t)− 2ZR(t).

Since ZR(t) never vanishes,
d

dt

√
ZR(t) ≤ ‖g‖Hs(Rd) −

√
ZR(t).

And by Gronwall’s Lemma, √
ZR(t) ≤ e−t

√
ZR(0) + (1− e−t)‖g‖Hs(Rd).

We conclude the proof by letting R to infinity. �

Since g is a probability density, ‖ĝ‖∞ ≤ 1, using the explicit definition f̂∞m in (3.4), we obtain
|f∞m | ≤ |ĝ| and the following result.

Lemma 5.2. For all s ≥ 0, we have

‖f∞m ‖Hs(Rd) ≤ ‖g‖Hs(Rd). (5.2)

We also need the following two interpolation inequalities (Theorem 4.1 and 4.2 in ref. [6]) that
we prove for the reader convenience. We recall the notion of a moment of order α > 0 of a density
f ∈ Pα(Rd)

Mα(f) :=

∫
Rd

|v|αf(v)dv.

Lemma 5.3. Let α > 0 and d ≥ 1 be an integer. Then there exists a constant C(α, d) > 0 such that
for every function f ∈ L2(Rd) ∩ Pα(Rd)

‖f‖L1(Rd) ≤ C(α, d)‖f‖α′

L2(Rd)Mα(f)1−α′
, (5.3)

with α′ := 2α/(2α+ d).

Proof. For every R > 0, it holds that∫
R
|f(v)|dv ≤

∫
|v|≤R

|f(v)|dv +
1

Rα

∫
Rd

|v|α|f(v)|dv

≤ Rd/2
√

Vol(Bd)‖f‖L2(Rd) +
1

Rα
Mα(f) (5.4)

where Vol(Bd) is the euclidian volume of the unit ball of Rd. R is chosen such as

Rd/2
√

Vol(Bd)‖f‖L2(Rd) =
1

Rα
Mα(f).

This defines R as

R =

(
Mα(f)√

Vol(Bd)‖f‖L2(Rd)

)2/(2α+d)

. (5.5)

By taking R as in (5.5) in (5.4), we obtain (5.3) for C(α, d) = 2Vol(Bd)α/(2α+d). �
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Lemma 5.4. Let s ≥ 0 and d ≥ 1 be an integer. For every s′ > d/2 + 2s + 2 there exists a constant
C(s, s′, d) > 0 such that for every f1, f2 ∈ Hs′(Rd) ∩ P2(Rd) satisfying

∫
Rd vf1(v)dv =

∫
Rd vf2(v)dv

‖f1 − f2‖Hs(Rd) ≤ C(s, s′, d)
√
d2(f1, f2)

√
‖f1 − f2‖Hs′ (Rd). (5.6)

Proof. For s′ > d/2 + 2s+ 2, we have∫
Rd

(1 + |ξ|2)s|f̂1(ξ)− f̂2(ξ)|2dξ ≤
∫

Rd

|f̂1(ξ)− f̂2(ξ)|
|ξ|2

(1 + |ξ|2)s+1

(1 + |ξ|2)s′/2
(1 + |ξ|2)s

′/2|f̂1(ξ)− f̂2(ξ)|dξ.

By Cauchy-Schwarz inequality, it holds that∫
Rd

(1 + |ξ|2)s|f̂1(ξ)− f̂2(ξ)|2dξ ≤ d2(f1, f2)

(∫
Rd

dξ

(1 + |ξ|2)s′−2s−2

)1/2

‖f1 − f2‖Hs′ (Rd).

The assumption on s′ implies that the integral in the right-hand side is finite. �

Proof of item (4) in Theorem 1.1. Applying (5.3) with v 7−→ |f(t, v) − f∞m (v)| and with α = 2,
leads to

‖f(t, · )− f∞m ‖L1(Rd) ≤ C(2, d)‖f(t, · )− f∞m ‖
4/(d+4)

L2(Rd)
M2(|f(t, · )− f∞m |)d/(d+4)

≤ C(2, d)‖f(t, · )− f∞m ‖
4/(d+4)

L2(Rd)
(M2(f(t, .)) + 2M2(g) + |m|2)d/(d+4).

By (2.15), M2(f(t, .)) ≤M2(f0) + 2M2(g) for all t ≥ 0. So

‖f(t, · )− f∞m ‖L1(Rd) ≤ C1‖f(t, · )− f∞m ‖
4/(d+4)

L2(Rd)
(M2(f0) +M2(g) + |m|2)1/5 (5.7)

with C1 = 4d/(d+4)C(2, d). Then by (5.6) with s = 0, and s′ > 2 + d/2, it comes that

‖f(t, · )− f∞m ‖2L2(Rd) ≤ C(0, s′, d)2d2(f(t, · ), f∞m )‖f(t, · )− f∞m ‖Hs′ (Rd)

≤ C(0, s′, d)2d2(f(t, · ), f∞m )(‖f(t, · )‖Hs′ (Rd) + ‖f∞m ‖Hs′ (Rd)).

By (5.1) and (5.2), we have ‖f(t, · )‖Hs′ (Rd) + ‖f∞m ‖Hs′ (Rd) ≤ ‖f0‖Hs′ (Rd) + 2‖g‖Hs′ (Rd). So

‖f(t, · )− f∞m ‖
4/(d+4)

L2(Rd)
≤ C2d2(f(t, · ), f∞m )2/(d+4)(‖f0‖Hs′ (Rd) + ‖g‖Hs′ (Rd))

2/(d+4) (5.8)

with C2 = 22/(d+4)C(0, s′, d)4/(d+4). Substituting (5.8) in (5.7), leads to

‖f(t, · )− f∞m ‖L1(Rd) ≤ C1C2(‖f0‖Hs′ (Rd)+‖g‖Hs′ (Rd))
2/(d+4)

(M2(f0) +M2(g) + |m|2)d/(d+4)d2(f(t, · ), f∞m )2/(d+4).

And then by (4.1),

d2(f(t, · ), f∞m )2/(d+4) ≤
(
M2(f0) + 2M2(g) + |m|2

2

)2/(d+4)

e−t/(d+4)

≤ (M2(f0) +M2(g) + |m|2)2/(d+4)e
− t

(d+4) .

Thus, we obtain (1.9) with a constant

C = C1C2(‖f0‖Hs′ (Rd) + ‖g‖Hs′ (Rd))
2/(d+4)(σ2

f (0) + σ2
g +m2)(d+2)/(d+4).

And consequently the exponential convergence of f(t, · ) towards f∞m is obtained since f0 ∈ Hs′(Rd) ∩
Pm2 (Rd) and g ∈ Hs′(Rd) ∩ P0

2 (Rd) with s′ > 2 + d/2. �
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6 Numerical results

This section is devoted to the numerical resolution of (1.4) in dimension d = 1. We will present six
tests cases for two different initial conditions f0 and with three different values of g, where g is a
density. For each test case, the solution f is depicted for different values of t and compared with the
equilibrium state f∞m theoretically found in order to characterize the exponential rate of convergence
for the strong-norm L1. To represent the solution of (1.4) numerically, we use an Euler scheme in time
for ∆t = 0.015 followed by a Simpson rule on the interval [−10, 10] with a uniform step ∆x = 0.1. We
will therefore represent numerically the solutions of the equation

∂f

∂t
=

∫∫
R×R

g

(
v − v′ + v′?

2

)
f(t, dv′)f(t, dv′?)− f(t, · )

∫
R
f(t, dv′)

f(0, · ) = f0.

(6.1)

In the first case, g is a centered Gaussian of variance σ2
g = 1,

g(v) =
1√
2π

exp

(
−v

2

2

)
. (6.2)

In the second case where g is an indicator function

g(v) =
1

2
1[−1,1](v). (6.3)

In the third case, g writes

g(v) =
1

n

n∑
i=1

1√
2πσ2

i

exp

(
−(v −mi)

2

2σ2
i

)
, (6.4)

with
∑n

i=1mi = 0 since g is zero mean. We take in (6.4), n = 3, m1 = 3, m2 = m3 = −3/2, σ2
1 = 1,

σ2
2 = 2 and σ2

3 = 4. In other words, g is a normalized sum of three Gaussians.
For each g, we consider two different initial conditions f0 defined as follows

• The first the initial condition f0 is a normalized Gaussian of mean 2 given by

f0(v) =
1√
2π

exp

(
−(v − 2)2

2

)
. (6.5)

• The second initial condition f0 is equal to g defined by (6.4), with n = 3, m1 = 3,
m2 = m3 = −3/2, σ2

1 = 1, σ2
2 = 2 and σ2

3 = 4.

Test case 1

For the first test case, g is a normalized centered Gaussian (6.2). Since g is a Gaussian, Proposition 3.1
gives an explicit formula for the equilibrium state. In that case, f∞m is a Gaussian of variance 2σ2

g = 2
with the same mean as the initial condition f0. Hence for f0 defined by (6.5), f∞m writes

f∞m (v) =
1√
4π

exp

(
−(v − 2)2

4

)
. (6.6)

From f0 defined by (6.4), f∞m writes

f∞m (v) =
1√
4π

exp

(
−v

2

4

)
(6.7)
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Figure 1: Distribution function of the solution of (6.1) with g defined by (6.2). On the left, solution
for initial condition (6.5) at times t = 0, t = 30 and on the right, solution for initial condition (6.4) at
times t = 0, t = 30. Equilibrium state given in (3.4) (in circle).

Figure 2: Function t 7−→ log ‖f(t, · )− f∞m ‖L1 where f is the solution of (6.1) with g defined by (6.2).
On the left, f(t, · ) for initial condition (6.5) and f∞m given by (6.6). On the right, f(t, · ) for condition
(6.4) and f∞m is given by (6.7).

Since we have shown that f(t, .) converges exponentially to f∞m for the strong-norm L1, then the
function t 7−→ log ‖f(t, .)− f∞m ‖L1 must be bounded by an affine function. This is the case in Figure
2 but with a ratio 1/2 and not 1/5 theoretically found.

Test case 2

For the second test case, g defined by (6.3). Since g is not a Gaussian, the expression of the equilibrium
state f∞m is not explicit. Then f∞m is approached by f(t, · ) at time t = 35 corresponding to a converged
result.
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Figure 3: Distribution function of the solution of (6.1) with g defined by (6.3). On the left, solutions
for initial condition (6.5) at times t = 0, t = 20, t = 30 and on the right, solutions for initial condition
(6.4) at times t = 0, t = 20, t = 30.

Figure 4: Function t 7−→ log ‖f(t, · ) − f∞m ‖L1 for f the solution of (6.1) with g defined by (6.3). On
the left, f(t, · ) for initial condition (6.5) and f∞m is replaced by a converged solution f(t, · ) at time
t = 35. On the right, f(t, · ) for initial condition (6.4) and f∞m replaced by a converged solution f(t, · )
at time t = 35.

Fig 3 shows that f(t, ·) goes towards the same asymptotic limit for the two different initial con-
ditions. This numerical result is consistent with Proposition 3.1 claiming that the equilibrium state
depends only on g. In Figure 4, the curve on the right is not rectilinear because there are two phe-
nomenons. First of all, the distribution goes towards a Maxwellian distribution and next to the right
one. However Fig. 4 shows that the convergence remains with an exponential rate.

Test case 3

The third test case is devoted to g defined by (6.4). Since g is not a Gaussian, no explicit formula
are again available for the equilibrium state f∞m . Hence f∞m is again approached by converged solution
obtained at time t = 35 as for test case 2. The two different initial conditions lead to the same
asymptotic state that theoretically only depends on the distribution g.
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Figure 5: Distribution function of the solution of (6.1) with g defined by (6.4). On the left, solutions
with initial condition (6.5) at times t = 0, t = 20, t = 30 and on the right, solutions with initial
condition (6.4) at times t = 0, t = 20, t = 30.

Figure 6: Function t 7−→ log ‖f(t, · ) − f∞m ‖L1 where f : t 7−→ f(t, · ) is the solution of (6.1) with g
defined by (6.4) and f∞m the equilibrium state. On the left, f(t, · ) with initial condition (6.5) and f∞m
is represent by the converged solution f(t, · ) at time t = 35. On the right, f(t, · ) for initial condition
(6.4) and f∞m is replaced by the converged solution f(t, · ) at time t = 35.

Conclusion

We have shown in this paper the existence of a unique mild solution of the equation (1.4) and the
exponential convergence toward the equilibrium state for the W2 metric and for the strong-norm L1,
in the case β = 1. The result elaborated in ref. [8] has been extended to the cases g ∈ P0

2 (R). The
extension of these results for a non-constant β and the inhomogeneous case is postponed to a following
paper.
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Appendix

A Complement on the Wasserstein metric

Proof of Proposition 2.1. (1) Let π1 be an optimal coupling of (µ1, ν1) and π2 be an optimal cou-
pling of (µ2, ν2). For α ∈ [0, 1], we set π = απ1 + (1− α)π2. It is easy to check that π is a coupling of
(αµ1 + (1− α)µ2, αν1 + (1− α)ν2) and therefore

W2(αµ1 + (1− α)µ2, αν1 + (1− α)ν2)2 ≤
∫∫

Rd×Rd

|x− y|2dπ(x, y)

= α

∫∫
Rd×Rd

|x− y|2dπ1(x, y)

+ (1− α)

∫∫
Rd×Rd

|x− y|2dπ2(x, y)

= αW2(µ1, ν1)2 + (1− α)W2(µ2, ν2)2.

(2) For v ∈ Rd, we consider an optimal coupling πv of (P1(v, · ), P2(v, · )) such that the map v 7−→ πv
is measurable. We set π as the coupling defined for any measurable function ϕ by∫∫

Rd×Rd

ϕ(x, y)dπ(x, y) =

∫∫∫
Rd×Rd×Rd

ϕ(x, y)dπv(x, y)dµ(v).

It is easy to check that π is a coupling of (
∫

Rd P1(v, · )dµ(v),
∫

Rd P2(v, · )dµ(v)) and therefore

W2

(∫
Rd

P1(v, · )dµ(v),

∫
Rd

P2(v, · )dµ(v)

)2

≤
∫∫

Rd×Rd

|x− y|2dπ(x, y)

=

∫∫∫
Rd×Rd×Rd

|x− y|2dπv(x, y)dµ(v)

=

∫
Rd

W2(P1(v, · ), P2(v, · ))2dµ(v).

(3) Let π1 be an optimal coupling of (µ1, ν1) and π2 be an optimal coupling of (µ2, ν2). We set
π = π1 ∗ π2. It is easy to check that π is a coupling of (µ1 ∗ µ2, ν1 ∗ ν2) and therefore

W2(µ1 ∗ µ2, ν1 ∗ ν2)2 ≤
∫∫

Rd×Rd

|x− y|2dπ(x, y)

=

∫∫∫∫
Rd×Rd×Rd×Rd

|x+ u− y − v|2dπ1(x, y)dπ2(u, v).

Using the classical equality |x+ y|2 = |x|2 + |y|2 + 2〈x, y〉, it holds that

W2(µ1 ∗ µ2, ν1 ∗ ν2)2

≤W2(µ1, ν1)2 +W2(µ2, ν2)2 + 2

∫∫∫∫
Rd×Rd×Rd×Rd

〈x− y, u− v〉dπ1(x, y)dπ2(u, v)

= W2(µ1, ν1)2 +W2(µ2, ν2)2 + 2

〈∫∫
Rd×Rd

(x− y)dπ1(x, y),

∫∫
Rd×Rd

(u− v)dπ2(u, v)

〉
= W2(µ1, ν1)2 +W2(µ2, ν2)2.

(4) Let π be a coupling of (µ, ν). By setting π0 = f#π, π0 is a coupling of (f#µ, f#ν). Thus

W2(f#µ, f#ν)2 ≤
∫∫

Rd×Rd

|x− y|2dπ0(x, y) =

∫∫
Rd×Rd

|f(x)− f(y)|2dπ(x, y).

�
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Proof of Lemma 2.2. Define the map T by

T : µ ∈ P2(Rd) 7−→
∫

Rd

vdµ(v).

Let π be a coupling of (µ, ν) with µ, ν ∈ P2(Rd). So

|T (µ)− T (ν)| =
∣∣∣∣∫∫

Rd×Rd

(v − u)dπ(u, v)

∣∣∣∣ ≤ ∫∫
Rd×Rd

|v − u|dπ(u, v).

By taking the infimum over π, we obtain |T (µ) − T (ν)| ≤ W1(µ, ν) and the Hölder inequality gives
W1(µ, ν) ≤ W2(µ, ν). Therefore T is continuous. Let us now show that the space Pm2 (Rd) is closed in
P2(Rd). Let (µn)n be a sequence in Pm2 (Rd) converging to µ for W2. µ ∈ P2(Rd) by completeness and
the continuity of T gives that T (µn) converges to T (µ). So T (µ) = m and µ ∈ Pm2 (Rd). �
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