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Abstract. This paper studies the non linear Boltzmann equation for a two
component gas at the small Knudsen number regime. The solution is found

from a truncated Hilbert expansion. The first order of the fluid equations shows

the ghost effect. The fluid system is solved when the boundary conditions are
close enough to each other. Next the boundary conditions for the kinetic

system are satisfied by adding for the first and the second order terms of the
expansion Knudsen terms. The construction of such boundary layers requires

the study of a Milne problem for mixtures. In a last part the rest term of the

expansion is rigorously controled by using a new decomposition into a low and
a high velocity part.

1. Introduction. This paper is devoted to the rigorous asymptotic analysis of
a kinetic system situated at a small Knudsen number regime with given indata
boundary conditions. The physical model is described in ([29]). It is constituted
by a mixture of vapor situated between two infinite parallel planes. Those two
phases can condense or evaporate on the two infinite parallel planes of condensed
phases kept at fixed temperatures. Moreover this model is supposed to be space
homogeneous in the directions parallel to the planes. Next two remarkable situations
are precisely investigated depending on the jump of the pressure of the total mixture
between the two condensed phases. If this difference is of order O(1), the mixture is
described at the continuum limit by the stationary Euler system corrected on each
boundary by Knudsen layers. Hence the solution of this Euler system is constant
exept at the boundary layers. In a second situation the jump is of the same order as
the Knudsen number. In that case the macroscopic velocity of each specy is of order
one w.r.t the Knudsen number and so disappears when Knudsen number tends to
0. But the continuum level is described by a convection diffusion system where
zero order macroscopic quantites depend on the first order term of the macroscopic
velocity. That means that a perturbation of order ε on the kinetic problem gives
a finite effect on the fluid limit. This is an example of the ghost effect. It was
pointed out in the situation of a one component gas in ([26]) and in the situation of
a mixture of a condensable and a non condensable gas in ([1, 4, 3]). In the present
paper, only the second situation is investigated and the solution of the kinetic
system is constructed as an asymptotic expansion around a local Maxwellian. The
Hilbert terms of the expansion are corrected from the first order by Knudsen layers
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in order to satisfy the boundary conditions (1.2, 1.3). The estimate on the rest term
of the expansion remains the most delicate part of the work. The general technique
is to linearize the problem satisfied by the rest term and to obtain the rest as the
limit of a sequence of such linearized problem. But an important difficulty appears
when the equilibrium state is a non local Maxwellian function due to the presence
of third order terms in the velocity variable. If the equilibrium state is a global
Maxwellian, the decomposition of the rest term performed in ([16, 20, 21, 14]) and
in the present paper is not necessary because the third order term disappears. The
first idea to treat this problem has been introduced by Caflish for a time dependant
case and for a space periodic problem in [16]. The idea is to decompose the rest
term into a low and a high velocity part. The method has been generalized in
([20, 21]) for the stationary Boltzmann equation for a single component gas in
presence of a force term when macroscopic quantities satisfy Navier-Stokes system.
But the technique is restricted to boundary conditions of Maxwell diffuse reflection
type. In that case the type of boundary conditions is crucial because they lead to
a normal flux of the distribution function equal to 0 and the approach breaks down
for other types of boundary conditions. In the situation of a mixture this method
has been generalized in ([14]) when one component satisfies boundary conditions
of Maxwell-diffuse type and the other a given indata profile. Remark that when
the equilibrium state of the system is a global Maxwellian function (see [8, 9, 6, 5])
the present decomposition is not useful. Moreover when the same system of kinetic
equations is far from equilibrium the techniques of resolution are totally different. In
that case compactness techniques are used (see [12, 13, 15]) and weak L1 solutions
are obtained when small velocities are truncated.

Next we mention some other related results to the present paper. In ([6, 5]),
the authors consider the the Benard problem physically describded in [25]. They
construct by means of perturbative arguments for small Knudsen number, a positive
two dimensional solution to the stationary Boltzmann equations which is shown to
satisfy a stability property for long times. Let us notice that in ([5]), the control of
the rest term is performed thanks to a new spectral inequality. In ([7]) the ghost
effect by curvature intoduced in ([27]) is rigorously analysed from perturbative
arguments. The physical model corresponds to a Couette flow situated between
two coaxial rotating cylinders at the small curvature and small Knudsen number
regime. The comparison of the limiting model with the standard planar Couette
flow shows that an infinitesimal variation on the curvature induces a finite effect on
the solution.

Now let us describe the mathematical model studied in this paper. The molecules
of both species are assumed to be mechanically identical that is the molecular mass
and size are common to species. fA, fB are the distribution functions of the species
A and B, solutions to the stationary Boltzmann equation for a two component gas
([17])

ξ
∂

∂x
fA(x, v) =

1
ε
Q(fA, fA)(x, v) +

1
ε
Q(fA, fB)(x, v),

ξ
∂

∂x
fB(x, v) =

1
ε
Q(fB , fA)(x, v) +

1
ε
Q(fB , fB)(x, v),

x ∈ [−1, 1], v ∈ R3, (1.1)
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with

ε =
√
π

2
Kn =

√
π

2
l

2
and l =

1√
2πd2nI

.

l is the mean free path of the vapor molecules in the equilibrium state at rest with
temperature TI and density nI , Kn is the Knudsen number and d corresponds to
the diameter of the molecule. Q is called collision operator of the equation (1.1)
and is defined by ([17], [18])

Q(f, g)(x, v) =
∫

R3

∫
S2
B(v − v∗, ω)[f ′g′∗ − fg∗]dωdv∗,

with

f∗ = f(x, v∗), f ′ = f(x, v′), f ′∗ = f(x, v′∗).

v, v∗ and v′, v′∗ are the post-collisional and the pre-collisional velocities in an elastic
collision:

v′ = v − 〈v − v∗, ω〉ω, v′∗ = v∗ + 〈v − v∗, ω〉ω.
The velocity v ∈ R3 has for coordinates (ξ, η, χ) and 〈 , 〉 denotes the Euclidean
scalar product in R3. Let ω ∈ S2 be represented by the polar angle (with axis along
v − v∗) and the azimutal angle φ. The function B(v − v∗, ω) = |〈v − v∗, ω〉| is the
collision kernel of the collision operator Q considered in the situation of hard-sphere.

The boundary condition for the A and the B components satisfy the following
given indata profile

fA(−1, v) =
pAI /TI

(πTI)
3
2

exp(− v
2

TI
), ξ > 0, fA(1, v) =

pAII/TII

(πTII)
3
2

exp(
−v2

TII
), ξ < 0, (1.2)

fB(−1, v) =
pBI /TI

(πTI)
3
2

exp(− v
2

TI
), ξ > 0, fB(1, v) =

pBII/TII

(πTII)
3
2

exp(
−v2

TII
), ξ < 0. (1.3)

TI (resp. TII) represents the temperature of the condensed phase situated at x = −1
(resp. x = 1) and pαI is the saturation pressure of the species α at temperature TI
(resp. TII). For the sake of simplicity, we take as in [29] TI = pAI = 1. Moreover we
assume that the pressures satisfy the relation pAII = pB1 + 1 − pBII + 2√

π
∆ ε, where

∆ is a nonzero constant of order O(1) giving rise to the ghost-effect.
Next we define the macroscopic quantities nα, uα as the moments of the distri-

bution function fα, α ∈ {A,B} ([29]).

nα =
∫

R3
v

fαdv, nuα1 =
∫

R3
v

ξfαdv, nαuα =
∫

R3
v

vfαdv, pα = Tαnα =
2
3

∫
R3
v

(
v − uα

)2
fαdv.

(1.4)

Moreover the macroscopic quantites associated to the mixture can be defined by

n = nA + nB , nu = nAuA + nBuB , p = pA +
1
3
nA(uA − u)2 + pB +

1
3
nB(uB − u)2.

(1.5)

A usefull quantity is the concentration Xα of specy α defined by

Xα =
nα

n
. (1.6)

The main result of this paper is the following existence theorem for the system (1.1,
1.2, 1.3) proved by perturbative arguments.
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Theorem 1.1. For pBII (resp TII) close enough to pBI (resp TI), and ε small enough,
there is a solution (fA, fB) to the system (1.1, 1.2, 1.3) of the form

(fA, fB) = (fAH0 + εfA1 + ε2fA2 + ε3RA, fBH0 + εfB1 + ε2fB2 + ε3RB)

satisfying

‖RA‖∞ + ‖RB‖∞ ≤
c

ε
5
2
.

Remark 1. In the situation investigated in ([14]) the A component satisfies a
given indata profile whereas the B component satisfies Maxwell diffuse boundary
conditions

fB(−1, v) =
1
πT 2

I

exp(− v
2

TI
)
∫
ξ′<0

|ξ′|fB(−1, v′)dv′, ξ > 0,

fB(1, v) =
1

πT 2
II

exp(− v2

TII
)
∫
ξ′>0

|ξ′|fB(1, v′)dv′, ξ < 0.

And in this case the proof of Theorem 1.1 still holds. But the proof given in ([14])
cannot be generalized in the situation of the present paper.

This paper is organized as follows. In section 2 an asymptotic expansion in the
parameter ε is performed. The lower term of the expansion is shown to be a local
bi-Maxwellian. The next orders have to be corrected by adding Knudsen layers
constructed by from Milne problems for mixtures ([2]). Moreover the construction
of the boundary layers fixes the boundary conditions of some fluid quantities. Some
estimates are also required on the boundary Knudsen terms and are obtained by
arguing as in ([10]). At the end of the section a fluid system is derived and solved
when boundary conditions for fA and fB are close enough to each other (Theorem
2.2). Finally section 3 deals with the control the rest term (1.1). The rest term
is shown to satisfy a non linear Boltzmann problem. The estimates are firstly re-
searched on a linearized problem and are obtained thanks to a decomposition into
a low and a high velocity part ([20, 21, 14]). But in ([20, 21, 14]) the boundary con-
ditions are of Maxwell-diffuse reflection type which plays a crucial role. Therefore
the approach has to be modified here because the boundary conditions are different.
Finally we find a decomposition which is working either in the present situation or
in the situation developped in ([14]).

2. Asymptotic expansion. In this section we perform an asymptotic expansions
in the parameter ε of the solution of the system (1.1, 1.2, 1.3). The terms of the
Hilbert expansion have to be modified in order to satisfy the boundary conditions
(1.2, 1.3). That is why each term fαn of the expansion of the distribution function
associated to specy α writes

fαn = fαHn + fα−Kn + fα+
Kn, α ∈ {A;B}. (2.7)

In (2.7), fαHn is a smooth function depending on x whereas fα−Kn (resp. fα+
Kn) is a

smooth exponentially fast decaying function depending on the rescaled variable 1+x
ε

(resp. 1−x
ε ). At the end of the section, a fluid system is derived and solved when

the boundary conditions are close to each other (Theorem 2.2).
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2.1. Hilbert expansion. The distribution functions fA and fB are expanded in
Hilbert series as follows

fAH(x, v) = fAH0(x, v) + εfAH1(x, v) + · · · ,
fBH (x, v) = fBH0(x, v) + εfBH1(x, v) + · · · . (2.8)

Substitute fAH and fBH by the expressions given in (2.8) in the equation (1.1) leads
to

ξ
∂

∂x
(fAH0 + εfAH1 + · · · ) =

1
ε
Q(fAH0 + εfAH1 + · · · , fAH0 + εfAH1 + · · · )

+
1
ε
Q(fAH0 + εfAH1 + · · · , fBH0 + εfBH1 + · · · ), (2.9)

ξ
∂

∂x

(
fBH0 + εfBH1 + · · ·

)
=

1
ε
Q(fBH0 + εfBH1, · · · fAH0 + εfAH1 + · · · )

+
1
ε
Q(fBH0 + εfBH1 + · · · , fBH0 + εfBH1 + · · · ). (2.10)

A important Hilbert term is
fH = fAH + fBH . (2.11)

It corresponds to the sum of the two components and satisfies the relation

ξ
∂

∂x
(fH0 + εfH1 + · · · ) =

1
ε
Q(fH0 + εfH1 + · · · , fH0 + εfH1 + · · · ). (2.12)

By using the Hilbert expansions (2.8) for fAH and fBH and by identifying formally
the different orders of ε in (1.4, 1.5, 1.6), the following relations are obtained on the
macroscopic quantities for α ∈ {A;B}∫

R3
v

fαHmdv=nαHm (m = 0, 1 · · · ),
∫

R3
v

ξfαH0dv = nαH0u
α
1,H0,(2.13)∫

R3
v

vfαH0dv = nαH0u
α
H0,

∫
R3
v

ξ2fαH0dv =
1
2

(nαH0T
α
H0) ,(2.14)

Xα
H0 =

nαH0

nH0
,

∫
R3
v

v2fαH0dv = nαH0(uα1,H0)2 +
3
2
pαH0,(2.15)∫

R3
v

ξfαH1dv = nαH0u
α
1,H1 + nαH1u

α
1,H0,

∫
R3
v

vfαH1dv = nαH0u
α
1,H1 + nαH1u

α
1,H0, (2.16)∫

R3
v

v2fαH1dv =
3
2

(nαH0T
α
H1 + nαH1T

α
H0) + 2nαH0u

α
1,H0u

α
H1 + 2nαH0(uα1,H0)2. (2.17)

2.2. Determination of the Hilbert terms of the expansion.

2.2.1. Expression of fAH0 and fBH0. The identification of the terms of order −1 in
the equations (2.9) and (2.10) leads to

Q(fAH0, f
A
H0) +Q(fBH0, f

A
H0) = 0, (2.18)

Q(fAH0, f
B
H0) +Q(fBH0, f

B
H0) = 0. (2.19)

The system (2.18, 2.19) is solved by using the following lemma.
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Lemma 2.1. The solution to the system (2.18-2.19) is

fAH0(x, v) = nAH0

π
3
2 (TH0)

3
2

exp
(
− (ξ−u1,H0)

2+η2+χ2

TH0

)
, (2.20)

fBH0(x, v) = nBH0

π
3
2 (TH0)

3
2

exp
(
− (ξ−u1,H0)

2+η2+χ2

TH0

)
, (2.21)

where (nAH0, nBH0, TH0, u1,H0) ∈ R∗3+ × R.

The proof of Lemma 2.1 follows from ([2]).

2.2.2. Expression of fAH1 and fBH1. Firstly by inverting the relation

ξ
∂

∂x
fH0 = Q(fH0, fH1) +Q(fH1, fH0),

it holds that fH1 writes

fH1 =

(
nH1

nH0
+

2u1,H1

TH0
ξ + (

v2

TH0
− 3

2
)
TH1

TH0
− ξ̃A(|ṽ|)

pH0

∂

∂x
TH0

)
fH0,

where

E(v) =
1
π

3
2

exp(−v2).

ξA(|v|) is the solution to ([14, 19, 25])

LTH0(ξ̃A(|ṽ|)) = −ξ̃(ṽ2 − 5
2

),
∫ +∞

0

r4A(r)E(r)dr = 0,

where LTH0 is the linearized Boltzmann operator for a one component gas defined
by

LTH0(ψH1(ṽ)) :=
∫

R3
v∗×S2

E(ṽ∗)
(
ψH1(x, v′) + ψH1(x, v′∗)− ψH1(x, v)

−ψH1(x, v∗)
)B (|ṽ∗ − ṽ|√TH0, 〈ṽ∗ − ṽ, ω〉

√
TH0

)
√
TH0

dωdṽ∗.

More precisely (
nH1

nH0
+

2u1,H1

TH0
ξ + (

v2

TH0
− 3

2
)
TH1

TH0

)
fH0

is the hydrodynamical part of fH1 and corresponds to the projection of fH1 on the
kernel of LTH0 . The term

− ξ̃A(|ṽ|)
pH0

∂

∂x
TH0 fH0

is the non hydrodynamical part of fH1 and corresponds to the projection of fH1 on
the orthogonal of ker LTH0 .

Next (fAH1, f
B
H1) is determined from the identification of the 0 order terms in

(2.9) and (2.10). So

ξ
∂

∂x
fAH0 = Q(fAH0, fH1) +Q(fAH1, fH0), (2.22)

ξ
∂

∂x
fBH0 = Q(fBH0, fH1) +Q(fBH1, fH0). (2.23)



GHOST EFFECT FOR A VAPOR-VAPOR MIXTURE 7

Therefore (fAH1, f
B
H1) can be computed after the inversion of the relations (2.22,

2.23). From ([2]) the kernel of the linear mapping

λ : (φA, φB) 7→
(
Q(φfH0, f

A
H0) +Q(fH0, φAf

A
H0), Q(φfH0, f

B
H0) +Q(fH0, φBf

B
H0)
)

is kerλ =
{(
αA + βξ + γv2, αB + βξ + γv2

)
, (αA, αB , β, γ) ∈ R2

+ × R2
}

.
(fAH1, f

B
H1) is split into its hydrodynamical part and its non hydrodynamical part as

fAH1 = fAH0

(
pAH1

pAH0

+ 2ξ
u1,H1

TH0
+ (

v2

TH0
− 5

2
)
TH1

TH0
− ξ̃A(|ṽ|)

pH0

∂

∂x
TH0 −

ξ̃C(ṽ)
nH0pAH0

∂

∂x
pAH0

)
,

(2.24)

fBH1 = fBH0

(
pBH1

pBH0

+ 2ξ
u1,H1

TH0
+ (

v2

TH0
− 5

2
)
TH1

TH0
− ξ̃A(|ṽ|)

pH0

∂

∂x
TH0 −

ξ̃C(ṽ)
nH0pBH0

∂

∂x
pBH0

)
,

(2.25)

where C is a solution to the equation ([14, 30, 32])

Q(E(ṽ), E(ṽ)ξ̃C(ṽ)) = −ξ̃E(ṽ).

As previously fH2, fAH2 and fBH2 can be computed in the following form

fH2 = fH0(c0 + c1ξ + c4v
2 + ψH2), fαH2 = fαH0(cα0 + c1ξ + c4v

2 + ψH2 + ϕα), α ∈ {A,B},

where

c0 =
pH2

pH0
− 5

2

(
TH2

TH0
+
nH1TH1

nH0TH0

)
−
u2

1,H1

TH0
, c1 = 2

(
u1,H2

TH0
+
nH1

nH0

u1,H1

TH0

)
c4 =

1
TH0

(
TH2

TH0
+
nH1

nH0

TH1

TH0
+

2
3
u2

1,H1

TH0

)
, cα0 =

pαH2

pαH0

− 5
2

(
TαH2

TH0
+
nαH1T

α
H1

nAH0TH0

)
−
u2

1,H1

TH0
.

For the computation of the functions ψH2 and ϕα, we refer to ([11]).

2.3. Study of the boundary conditions for the Hilbert terms. In this sub-
section we show that fAH0 and fBH0 satisfy the boundary conditions (1.2, 1.3). But
for the other Hilbert terms fAH1, fBH1, fAH2, fBH2, Knudsen layers must be added at
each boundary and these layers are solutions to Milne problems for mixtures ([2]).

2.3.1. Closure of the system at the 0 order. (fAH0, f
B
H0) satisfies (1.2, 1.3) when the

macroscopic quantities pAH0, pBH0, TH0 satisfy the boundary conditions

pAH0(−1) = 1, pBH0(−1) = pBI , TH0(−1) = 1,

pAH0(1) = pBII + pBI − 1, pBH0(1) = pBII , TH0(1) = TII , (2.26)

and u1,H0 = 0.

2.3.2. Knudsen layer at first and second orders. As fAH1 and fBH1 defined in (2.24)
and (2.25) cannot satisfy the boundary conditions

fAH1(−1, v) = 0, fAH1(1, v) =
2√
π

∆
pAH0(1)

fAH0(1, v), fBH1(−1, v) = fBH1(1, v) = 0,

Knudsen terms must be added at each boundary.
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By setting x′ = 1+x
ε , x′′ = 1−x

ε , the modified Hilbert terms f1, fA1 and fB1 are
written as follows

f1(x, v) = fH1(x, v) + f−K1(x′, v) + f+
K1(x′ ′, v), (2.27)

fA1 (x, v) = fAH1(x, v) + fA−K1 (x′, v) + fA+
K1 (x′ ′, v), (2.28)

fB1 (x, v) = fBH1(x, v) + fB−K1 (x′, v) + fB+
K1 (x′ ′, v). (2.29)

Then we aim to construct the boundary layers fA−K1 , fB−K1 , fA+
K1 and fB+

K1 in order
to impose the boundary conditions

fAH1(−1, v) + fA−K1 (0, v) = 0, fBH1(−1, v) + fB−K1 (0, v) = 0 for ξ > 0 (2.30)

and

fAH1(1, v) + fA+
K1 (0, v) =

2√
π

∆
pAH0(1)

fAH0(1, v), fBH1(1, v) + fB+
K1 (0, v) = 0, for ξ < 0.

(2.31)
From here denote M̃ = 1

nAH0
fAH0 i.e

M̃ =
1

(πTH0)
3
2

exp(− v2

TH0
), MA = nAH0M̃ and MB = nBH0M̃.

Consider as in ([2]), the space H with the scalar product

〈f, g〉 = 〈
(
fA, fB

)
;
(
gA, gB

)
〉

= nAH0

∫
R3
fA(v)gA(v)M̃(v)dv + nBH0

∫
R3
fB(v)gB(v)M̃(v)dv

and ‖ ‖H the associated Hilbert norm.

Proposition 1. There are boundary conditions in x = −1 for the first order Hibert
terms (fAH1, f

B
H1) defined by (2.24, 2.25) and Knudsen terms (fA−K1 (x′, v), fB−K1 (x′, v))

solutions to

ξ
∂

∂x′
fA−K1 (x′, v) = Q(MA(−1, v), f−K1(x′, v)) +Q(fA−K1 (x′, v),M(−1, v)), (2.32)

ξ
∂

∂x′
fB−K1 (x′, v) = Q(MB(−1, v)f−K1(x′, v)) +Q(fB−K1 (x′, v),M(−1, v)), (2.33)

where M = MA +MB and f−K1 = fA−K1 + fB−K1 .
Moreover the following asymptotic properties hold. fA−K1 and fB−K1 write as

fA−K1 (x′, v) = MA(−1, v)φA−1 (x′, v), fB−K1 (x′, v) = MB(−1, v)φB−1 (x′, v),

where for x′ tending to infinity φA−1 and φB−1 converge exponentially to 0 as

‖(1 + |v|) 1
2φA−1 (x′, v)‖H ≤ exp(−σx′), ‖(1 + |v|) 1

2φB−1 (x′, v)‖H ≤ exp(−σx′),(2.34)

a.e x′ > 0 with σ < 2ν1 where ν1 is defined in (3.82).
Moreover the construction of the Knudsen layers fA−K1 , fB−K1 , fA+

K1 , fB+
K1 define

the boundary conditions for pAH1, pBH1 and TH1.



GHOST EFFECT FOR A VAPOR-VAPOR MIXTURE 9

Proof. From [2] there are
(
bA−1 , bB−1

)
,
(
gA−1 , gB−1

)
and

(
dA−1 , dB−1

)
unique solutions

to the Milne problems

ξ
∂

∂x′
bA−1 (x′, v) =

1
MA(−1, v)

(
Q(MA(−1, v)M(−1, v)b−1 (x′, v))

+ Q(MA(−1, v)bA−1 (x′, v),M(−1, v))
)
,

ξ
∂

∂x′
bB−1 (x′, v) =

1
MB(−1, v)

(
Q(MB(−1, v),M(−1, v)b−1 (x′, v))

+ Q(MB(−1, v)bB−1 (x′, v),M(−1, v))
)
,

bA−1 (0, v) =
ξ√

TH0(−1)
A(|ṽ|), ξ > 0, bB1 (0, v) =

ξ√
TH0(−1)

A(|ṽ|), ξ > 0,∫
R3
ξMA(−1, v)bA−1 (x′, v)dv = 0,

∫
R3
ξMB(−1, v)bB−1 (x′, v)dv = 0,

ξ
∂

∂x′
gA−1 (x′, v) =

1
MA(−1, v)

(
Q(MA(−1, v)M(−1, v)g−1 (x′, v))

+ Q(MA(−1, v)gA−1 (x′, v),M(−1, v))
)
,

ξ
∂

∂x′
gB−1 (x′, v) =

1
MB(−1, v)

(
Q(MB(−1, v),M(−1, v)g−1 (x′, v))

+ Q(MB(−1, v)gB−1 (x′, v),M(−1, v))
)
,

gA−1 (0, v) =

ξ√
TH0(−1)

C(|ṽ|)

XA
H0(−1)

, ξ > 0, gB1 (0, v) = −
ξ√

TH0(−1)
C(|ṽ|)

XB
H0(−1)

, ξ > 0,∫
R3
ξMA(−1, v)gA−1 (x′, v)dv = 0,

∫
R3
ξMB(−1, v)gB−1 (x′, v)dv = 0

and

ξ
∂

∂x′
dA−1 (x′, v) =

1
MA(−1, v)

(
Q(MA(−1, v),M(−1, v)d−1 (x′, v))

+ Q(MA(−1, v)dA−1 (x′, v),M(−1, v))
)
,

ξ
∂

∂x′
dB−1 (x′, v) =

1
MB(−1, v)

(
Q(MB(−1, v),M(−1, v)d−1 (x′, v))

+ Q(MB(−1, v)dB−1 (x′, v),M(−1, v))
)
,

dA−1 (0, v) = −2
ξ√

TH0(−1)
, ξ > 0, dB−1 (0, v) = −2

ξ√
TH0(−1)

, ξ > 0,∫
R3
ξMA(−1, v)dA−1 (x′, v)dv = 0,

∫
R3
ξMB(−1, v)dB−1 (x′, v)dv = 0,

with b−1 = bA−1 + bB−1 , g−1 = gA−1 + gB−1 and d−1 = dA−1 + dB−1 . Moreover

lim
x′→+∞

bA−1 (x′, v) = bA−1,∞,0 + b−1,∞,4v
2, lim

x′→+∞
bB−1 (x′, v) = bB−1,∞,0 + b−1,∞,4v

2,

lim
x′→+∞

gA−1 (x′, v) = gA−1,∞,0 + g−1,∞,4v
2, lim

x′→+∞
gB−1 (x′, v) = gB−1,∞,0 + g−1,∞,4v

2,

lim
x′→+∞

dA−1 (x′, v) = dA−1,∞,0 + d−1,∞,4v
2, lim

x′→+∞
dB−1 (x′, v) = dB−1,∞,0 + d−1,∞,4v

2,
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where bA−1,∞,0, bB−1,∞,0, b−1,∞,4, gA−1,∞,0, gB−1,∞,0, g−1,∞,4, dA−1,∞,0, dB−1,∞,0 and d−1,∞,4 are
constants. Finally we define fA−K1 as

fA−K1 (x′, v) =
(
u1,H1(−1)√
TH0(−1)

(dA−1 (x′, v)− dA−1,∞,0 − d
−
1,∞,4v

2)

+
∂xTH0(−1)
pH0(−1)

(bA−1 (x′, v)− bA−1,∞,0 − b
−
1,∞,4v

2)

+
∂xp

A
H0(−1)

pH0(−1)
(gA−1 (x′, v)− gA−1,∞,0 − g

−
1,∞,4v

2)
)
fAH0(−1, v).(2.35)

So from (2.24), (2.35) it comes that

fA−K1 (0, v) + fAH1(−1, v) = fAH0(−1, v)
(pAH1(−1)
pAH0(−1)

+ (
v2

TH0(−1)
− 5

2
)
TH1(−1)
TH0(−1)

− u1,H1(−1)√
TH0(−1)

(dA−1,∞,1 + d−1,∞,4v
2)

− ∂xTH0(−1)
pH0(−1)

(bA−1,∞,1 + b−1,∞,4v
2)

− ∂xp
A
H0(−1)

pH0(−1)
(gA−1,∞,1 + g−1,∞,4v

2)
)
.

Therefore the boundary condition (2.30) is satisfied when TH1(−1) is defined by the
relation

TH1(−1)
T 2
H0(−1)

=
u1,H1(−1)√
TH0(−1)

d−1,∞,4 +
∂xTH0(−1)
pH0(−1)

b−1,∞,4 +
∂xp

A
H0(−1)

pH0(−1)
g−1,∞,4 (2.36)

and the boundary condition pAH1(−1) is defined as

pAH1(−1)
pAH0(−1)

=
u1,H1(−1)√
TH0(−1)

(dA−1,∞,0 +
5
2
TH0(−1)d−1,∞,4)

+
∂xTH0(−1)
pH0(−1)

(bA−1,∞,0 +
5
2
TH0(−1)b−1,∞,4)

+
∂xp

A
H0(−1)

pH0(−1)
(gA−1,∞,0 +

5
2
TH0(−1)g−1,∞,4).

So by using (2.36) pAH1(−1) writes

pAH1(−1) = pAH0(−1)
u1,H1(−1)√
TH0(−1)

(dA−1,∞,0 +
5
2
TH0(−1)d−1,∞,4)

+ pAH0(−1)
∂xTH0(−1)
pH0(−1)

(bA−1,∞,0 +
5
2
TH0(−1)b−1,∞,4)

− pAH0(−1)
∂xp

A
H0(−1)

pH0(−1)
(gA−1,∞,0 +

5
2
TH0(−1)g−1,∞,4).
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Hence pAH1(−1) can be rewritten in function of XA
H0(−1) as

pAH1(−1) = XA
H0(−1)pH0(−1)

u1,H1(−1)√
TH0(−1)

(dA−1,∞,0 +
5
2
TH0(−1)d−1,∞,4)

+ XA
H0(−1)∂xTH0(−1)(bA−1,∞,0 +

5
2
TH0(−1)b−1,∞,4)

+ XA
H0(−1)∂xpAH0(−1)(gA−1,∞,0 +

5
2
TH0(−1)g−1,∞,4).

Next by setting for α ∈ {A,B},

aαIV = dα−1,∞,0 +
5
2
TH0(−1)d−1,∞,4, aαIT = bα−1,∞,0 +

5
2
TH0(−1)b−1,∞,4,

aαIX = gα−1,∞,0 +
5
2
TH0(−1)g−1,∞,4,

we get the boundary condition for pAH1

pAH1(−1) = XA
H0(−1)pH0(−1)

u1,H1(−1)√
TH0(−1)

aAIV

+ XA
H0(−1)∂xTH0(−1)aAIT +XA

H0(−1)∂xpAH0(−1)aAIX .

In the same way we define fB−K1 as (2.35) and we find the boundary condition for
pBH1,

pBH1(−1) = XB
H0(−1)pH0(−1)

u1,H1(−1)√
TH0(−1)

aBIV

+ XB
H0(−1)∂xTH0(−1)aBIT −XB

H0(−1)∂xpAH0(−1)aBIX .

Finally the boundary condition for pH1 at x = −1 writes

pH1(−1) = pH0(−1)
u1,H1(−1)√
TH0(−1)

aIV + ∂xTH0(−1)aIT + ∂xp
A
H0(−1)aIX , (2.37)

with

aIV = XA
H0(−1)aAIV +XB

H0(−1)aBIV , aIT = XA
H0(−1)aAIT +XB

H0(−1)aBIT ,

aIX = XA
H0(−1)aAIX −XB

H0(−1)aBIX .

In order to satisfy the boundary conditions at x = 1 we proceed as for x = −1. In
that case the Knudsen terms are defined as

fα+
K1 (x′′, v) =

(
u1,H1(1)√
TH0(1)

(dα+
1 (x′′, v)− dα+

1,∞,0 − d
+
1,∞,4v

2)

+
∂xTH0(1)
pH0(1)

(bα+
1 (x′′, v)− bα+

1,∞,0 − b
+
1,∞,4v

2)

+
∂xp

α
H0(1)

pH0(1)
(gα+

1 (x′′, v)− gα+
1,∞,0 − g

+
1,∞,4v

2)
)
fαH0(1, v), α ∈ {A,B},

where dα+
1 , bα+

1 and gα+
1 are solutions to Milne problems and the constants dα+

1,∞,0,
d+
1,∞,4, bα+

1,∞,0, b+1,∞,4, gα+
1,∞,0 and g+

1,∞,4 are defined as previously. Therefore pAH1(1)
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and pBH1(1) are given by

pAH1(1) = pAH0(1)
u1,H1(1)√
TH0(1)

aAIIV XA
H0(1) + ∂xTH0(1)aAIIT XA

H0(1)

+ ∂xp
A
H0(1)aAIIX XA

H0(1) +
2√
π

∆,

and

pBH1(1) = pBH0(1)
u1,H1(1)√
TH0(1)

aBIIV XB
H0(1) + ∂xTH0(1)aBIIT XB

H0(1)− ∂xpAH0(1)aBIIX XB
H0(1)

with

aαIIV = dα+
1,∞,0 +

5
2
TH0(1)d+

1,∞,4, aαIIT = bα+
1,∞,0 +

5
2
TH0(1)b+1,∞,4,

aαIIT = gα+
1,∞,0 +

5
2
TH0(1)g+

1,∞,4.

So adding the two previous equations gives pH1(1) as

pH1(1) = pH0(1)
u1,H1(1)√
TH0(1)

aIIV + ∂xTH0(1)aIIT + ∂xp
A
H0(1)aIIX +

2√
π

∆, (2.38)

with

aIIV = XA
H0(1)aAIIV +XB

H0(1)aBIIV , aIIT = XA
H0(1)aAIIT +XB

H0(1)aBIIT ,

aIIX = XA
H0(1)aAIIX −XB

H0(1)aBIIX .

Like previously fAH2 and fBH2 can be defined by identification of the first order
terms in ε. fAH2 and fBH2 are computed in function of (nAH1, n

B
H1, T

A
H1, T

B
H1, u

A
1,H1, u

B
1,H1)

which are solutions to a fluid system that can be solved by arguing as in The-
orem 2.2. As for the first order, Knudsen terms fA−K2 , fB−K2 , fA+

K2 , fB+
K2 must be

added to the Hilbert terms fAH2 and fBH2 in order to satisfy the boundary conditions
fA2 (−1, v) = fA2 (1, v) = fB2 (−1, v) = fB2 (1, v) = 0. These Knudsen layers are also
constructed by solving Milne problems for mixtures. In the following, we will use
the notations

γA−1,ε = fA−K1 (
2
ε
, v), γA+

1,ε = fA+
K1 (

2
ε
, v), γB−1,ε = fB−K1 (

2
ε
, v),

γB+
1,ε = fB+

K1 (
2
ε
, v), γ−1,ε = γA−2,ε + γB−2,ε , γ

+
1,ε = γA+

1,ε + γB+
1,ε ,

γA−2,ε = fA−K2 (
2
ε
, v), γA+

2,ε = fA+
K2 (

2
ε
, v), γB−2,ε = fB−K2 (

2
ε
, v),

γB+
2,ε = fB+

K2 (
2
ε
, v), γ−2,ε = γA−2,ε + γB−2,ε , γ

+
2,ε = γA+

2,ε + γB+
2,ε . (2.39)

2.4. First order fluid equations. In this subsection we consider a fluid system
mixing 0 order and first order terms which is derived from the kinetic system (1.1,
1.2, 1.3) ([29]). As in ([20], [21]), this system is solved for well prepared boundary
conditions closed enough to each other (Theorem 2.2). This assumption is crucial
for obtaining estimates on Knudsen terms given in Lemma 3.1.
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Theorem 2.2. The macroscopic quantities uA1,H1, uB1,H1, pAH0, pBH0, TH0 and pH1

satisfy the following fluid system
∂

∂x
pH0 = 0, (2.40)

∂

∂x
(nAH0u

A
1,H1) = 0, (2.41)

∂

∂x
(nBH0u

B
1,H1) = 0, (2.42)

γ2

2
∂

∂x

( ∂
∂x

(TH0)T
1
2
H0

)
= nH0u1,H1

∂

∂x
TH0, (2.43)

uA1,H1 − uB1,H1 = −γc
T

1
2
H0

pH0nAH0n
B
H0

∂

∂x
pAH0, (2.44)

∂

∂x
pH1 = 0, (2.45)

where pAH0 = nAH0TH0 and pBH0 = nBH0TH0.
Moreover this system can be solved as follows. There are τ0 > 0 and λ > 0 such
that for all τ ∈ R satisfying |τ | ≤ τ0, there are TII , pBII and ∆ such that

|1− TII | ≤ λ̃τ, |pBI − pBII | ≤ λ̃τ, |∆| ≤ λ̃τ
and such that the system (2.40-2.45) has a unique solution TH0, pAH0, pBH0, pH1,
uA1,H1, uB1,H1 satisfying the boundary conditions (2.26) and (2.37, 2.38).
Moreover there is λ > 0, such that (for all x ∈ [−1, 1])

|pAH0(x)− 1| ≤ λτ, |pBH0(x)− pBI | ≤ λτ, |TH0(x)− 1| ≤ λτ, |u1,H1| ≤ λτ,
|(pAH0)′(x)| ≤ λτ, |(pBH0)′(x)| ≤ λτ, |(TH0)′(x)| ≤ λτ. (2.46)

Proof. (Theorem 2.2) The derivation of such a system is performed in ([29]). Next
we focus on its closure. According to (2.41, 2.42) there are two constants θA and
θB such that θA = nAH0u

A
1,H1 and θB = nBH0u

B
1,H1. Next we determine θ defined by

θ = θA + θB = nH0u1,H1. By using that pH1(−1) = pH1(1) together with (2.37,
2.38), it holds that θ is given by

θ =
∂xTH0(1)aIIT − ∂xTH0(−1)aIT − ∂xpAH0(1)aIIX + ∂xp

A
H0(−1)aIX + 2√

π
∆√

TH0(−1)aIV −
√
TH0(1)aIIV

.

According to the previous relation it is equivalent to find θ from ∆ instead of
the contrary. Therfore from a given θ, such that |θ| ≤ τ , we define ∆ by the
prevous relation. Next in order to determine TH0, we consider (2.43). By denoting
c = ∂xTH0(−1), TH0 is the solution of the Cauchy problem

∂
∂xTH0

2θ
γ2

(TH0 − 1) + c
=

1√
TH0

, (2.47)

TH0(−1) = 1, (2.48)
∂

∂x
TH0(−1) = c. (2.49)

In order to satisfy the inequalities (2.46) for TH0 an estimate is researched on c. By
solving the Cauchy problem (2.47, 2.48, 2.49), it comes that

|TH0 − 1| ≤ |c| γ2

2|θ|

(
exp(

2θ
γ2

∫ x

−1

1√
TH0

ds) + 1
)
.
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Next in order to get |TH0 − 1| ≤ τ , it is enough to take |c| ≤ 2|θ|
γ2
τ which implies

|c| γ2

2|θ|

(
exp(

2θ
γ2

∫ x

−1

1√
TH0

ds) + 1
)
≤ τ.

Moreover TII defined by TII = TH0(1) satisfies |TII − 1| ≤ λ̃τ , where λ̃ is a noneg-
ative constant. In order to estimate ∂xTH0, we use (2.47) and we chose again |c|
small enough. So |∂xTH0| ≤ τ . Moreover from (2.40), nH0 writes

nH0 =
α

TH0
,

where α is a free parameter. Hence the boundary condition pH0(−1) = 1+pBI gives
α = 1 + pBI . In order to determine pBH0 we look for an equation satisfied by the
concentration XB

H0. (2.44) can be rewritten

nBH0θ
A
1 − nAH0θ

B
1 = −γcT

1
2
H0

∂

∂x
XA
H0.

Hence by multiplying the previous equation by TH0 and by deriving we get

θ
∂

∂x
pBH0 = −γc

∂

∂x

(
T

3
2
H0

∂

∂x
XB
H0

)
.

Then dividing by pH0, it holds that XB
H0 satisfies

θ
∂

∂x
XB
H0 = −γc

∂

∂x

(T 1
2
H0

nH0

∂

∂x
XB
H0

)
. (2.50)

To find XB
H0, we proceed like for the resolution of (2.47, 2.48, 2.49). By setting

φ = ∂
∂xX

B
H0 and d = ∂

∂xX
B
H0(−1), φ is solution to the Cauchy problem

(
θ + γc

∂

∂x
(
T

1
2
H0

nH0
)
)
φ+ γc

T
1
2
H0

nH0

∂

∂x
φ = 0,

φ(−1) = d.

φ writes

φ(x) = d exp
(
−
∫ x

−1

nH0

γc T
1
2
H0

(θ + γc
∂

∂x
(
T

1
2
H0

nH0
))
)
.

Hence by chosing d such that

|d| ≤ τ exp
(∫ 1

−1

nH0

γc T
1
2
H0

(|θ|+ γc|
∂

∂x
(
T

1
2
H0

nH0
)|)
)
,

φ satisfies the estimate |φ| ≤ τ . Finally XB
H0 is defined by

XB
H0 =

pBI
1 + pBI

+
∫ x

−1

φ(s)ds.

This determines pBH0 and pBII = pBH0(1) satisfying the estimates

|pBH0 − pBI | ≤ (1 + pBI )τ, |pBII − pBI | ≤ λ̃τ, |(pBH0)′| ≤ λ̃τ,

λ̃ being a nonnegative constant independant of τ . Finally
pAH0 = (1 + pBI )− pBH0 satisfies pAH0(1) = (1 + pBI )− pBII and the estimate

|∂x(pAH0)| ≤ λ̃τ.
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3. Study of the rest term. This section devoted to the control of the rest term
when pAII (resp.pBII , resp. TII) is close to pAI (resp.pBI , resp.TI) and ε is sufficiently
small (Theorem 1.1). We first show that the rest term of the Hilbert expansion
is the solution of a non linear Boltzmann system. Next the idea is to consider
a linearization of such a problem and to estimate the solution of this linearized
problem. Following the ideas of [16] this solution is decomposed into a low and
a high velocity part, solutions to a system of equations. But the decomposition
introduced in [20, 21] and generalized in ([14]) for mixtures has to be modified here.
Indeed in [20, 21] one crucial point is that one of the distribution function satisfies
Maxwell diffuse boundary conditions. So the flux of the solution is equal to zero.
But this property is not true in the present situation of given indata profiles and
the decomposition proposed in [14, 20, 21] has to be modified.

3.1. The rest term. In ([16]) (resp.[20, 21]), the authors solve the time dependant
(resp. stationary) Boltzmann equation by splitting the distribution function into
an asymptotic expansion and a rest term and by controlling the rest term. In [14],
the proof developped in [20, 21] is adapted to the situation of a two component gas
when one component satisfies Maxwell-diffuse boundary conditions. But here due
to the two given indata profiles the decomposition has to be modified. As a result
we obtain a decomposition which allows the control of the rest term in the present
situation and in the situation of [14].

The rest term ε3fAR (resp. ε3fBR ) for fA (resp. fB) is defined as the difference
of fA (resp. fB) and its asymptotic expansion as

fA(x, v) = MA + ε
(
fAH1(x, v) + fA−K1 (

1 + x

ε
, v) + fA+

K1 (
1− x
ε

, v)
)

+ ε2
(
fAH2(x, v) + fA−K2 (

1 + x

ε
, v) + fA+

K2 (
1− x
ε

, v)
)

+ ε3RA(x, v), (3.51)

fB(x, v) = MB + ε

(
fBH1(x, v) + fB−K1 (

1 + x

ε
, v) + fB+

K1 (
1− x
ε

, v)
)

+ ε2
(
fBH2(x, v) + fB−K2 (

1 + x

ε
, v) + fB+

K2 (
1− x
ε

, v)
)

+ ε3RB(x, v).(3.52)

By plugging the expressions (3.51, 3.52) into (1.1) and by taking (2.22, 2.23) into
account, (RA, RB) has to satisfy the system

ξ
∂

∂x
RA =

1
ε

(
Q(MA, R) +Q(RA,M)

)
+Q(fA1 + εfA2 , R) +Q(RA, f1 + εf2)

+ ε2Q(RA, R) + ε3A, (3.53)

ξ
∂

∂x
RB =

1
ε

(
Q(MB , R) +Q(RB ,M)

)
+Q(fB1 + εfB2 , R) +Q(RB , f1 + εf2)

+ ε2Q(RB , R) + ε3B, (3.54)

with R = RA +RB and

A =
1
ε

(
− ξ ∂

∂x
fAH2 +Q(fA1 , f2) +Q(fA2 , f1) + εQ(fA2 , f2)

+ Q(fA−K2 (x′, v),∆+M) +Q(∆+MA, f−K2(x′, v))

+ Q(∆−M,fA+
K2 (x′′, v)) +Q(∆−MA, f+

K2(x′′, v))

+
1
ε

(
Q(fA+

K1 (x′′, v), f−K1(x′, v)) +Q(fA−K1 (x′, v), f+
K1(x′′, v))

))
, (3.55)
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B =
1
ε

(
− ξ ∂

∂x
fBH2 +Q(fB1 , f2) +Q(fB2 , f1) + εQ(fB2 , f2)

+
1
ε

(
Q(fB−K2 (x′, v),∆+M) +Q(∆+MB , f−K2(x′, v))

+ Q(fB+
K2 (x′′, v),∆−M) +Q(∆−MB , f+

K2(x′′, v))
))

+
1
ε

(
Q(fB+

K1 (x′′, v), f−K1(x′, v)) +Q(fB−K1 (x′, v), f+
K1(x′′, v))

))
, (3.56)

with

∆−M =
M −M(−1, v)

ε
, ∆−MA =

MA −MA(−1, v)
ε

,

∆−MB =
MB −MB(−1, v)

ε
, ∆+MB =

MB −MB(1, v)
ε

,

∆+M =
M −M(1, v)

ε
, ∆+MA =

MA −MA(1, v)
ε

.

Recall that the quantities f1, fA1 , fB1 , f2, fA2 , fB2 are defined by (2.27, 2.28, 2.29).
On the other hand RA and RB satisfy the following boundary conditions

RA(−1, v) = −
γA,−1,ε + εγA,−2,ε

ε2
= ζA−, ξ > 0, RA(1, v) = −

γA,+1,ε + εγA,+2,ε

ε2
= ζA+, ξ < 0,

(3.57)

RB(−1, v) = −
γB,−1,ε + εγB,−2,ε

ε2
= ζB−, ξ > 0, RB(1, v) = −

γB,+1,ε + εγB,+2,ε

ε2
= ζB+, ξ < 0,

(3.58)

where the terms γ−1,ε, γ
+
1,ε, γ

A,−
1,ε , γA,+1,ε , γB,−1,ε , γB,+1,ε , γ−2,ε, γ

+
2,ε, γ

A,−
2,ε , γA,+2,ε , γB,−2,ε ,

γB,+2,ε are defined by (2.39).
Moreover remark that according to (2.34) we have the estimate on the boundary
terms ζA−, ζA+, ζB− and ζB+

‖ζA−‖+ ‖ζA+‖+ ‖ζB−‖+ ‖ζB+‖ ≤ c̃ exp(
c′

ε
), (3.59)

for c̃ > 0.

3.2. A linearized problem for the rest term. The solutions (RA, RB) to the
system (3.53, 3.54) are constructed as the respective limits to a sequence of itera-
tions. The generic term of the iteration can be defined as a linear equation of the
type

ξ
∂

∂x
RA =

1
ε

(
Q(MA, R) +Q(RA,M)

)
+
(
Q(fA1 + εfA2 , R) +Q(RA, f1 + εf2)

)
+ ε2DA, (3.60)

ξ
∂

∂x
RB =

1
ε

(
Q(MB , R) +Q(RB ,M)

)
+
(
Q(fA1 + εfA2 , R) +Q(RA, f1 + εf2)

)
+ ε2DB , (3.61)

satisfying the boundary conditions (3.57, 3.58). More precisely at the step k of the
iteration, the term (DA, DB) is replaced by

(Q(RAk−1, Rk−1) + εA,Q(RBk−1, Rk−1) + εB).
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In the following, the terms R, RA and RB will be estimated in terms of D, DA, DB

and of the boundary conditions (3.57, 3.58).

3.3. Decomposition of the rest term. The natural way to deal with the lin-
earized Boltzmann equation is to change the operator f 7→ Q(M,f) into the oper-
ator f 7→ − 2

MQ(M,M−
1
2 f). But when the Maxwellian is not homogeneous, this

procedure produces the term ξM−
1
2 ξ ∂

∂x (M
1
2 f) which behaves like |v|3f and has no

sign. So as in [14, 16, 20, 21], R, RA and RB are decomposed into a low and a high
velocity part as follows

R =
√
Mg +

√
M∗h, RA =

√
MAgA +

√
M∗h

A, RB =
√
MBgB +

√
M∗h

B ,

(3.62)

whereM∗ is the global MaxwellianM∗(v) = 1

(πT∗)
3
2

exp(− v2

T∗
), with T∗ > supx∈[−1,1] TH0(x).

Hence there is c > 0 such that for all (x, v) ∈ [−1, 1]× R3, M∗ ≥ cM , M∗ ≥ cMA,
M∗ ≥ cMB . Since R = RA +RB ,

g =

√
nA√
n
gA +

√
nB√
n
gB , h = hA + hB . (3.63)

Remark that in ([8, 9, 6, 5]) this decomposition is not useful because the equilibrium
state is a global Maxwellian distribution.

In order to control gA, gB , hA and hB , the following L2 norm is considered

‖f‖ =

(∫
[−1,1]×R3

(1 + |v|)f2(x, v)dxdv

) 1
2

(3.64)

and is extended to the boundary terms hA−, hA+, hA− and hA+ depending only on the
v variable. As basis for the kernel of the linearized Boltzmann operator, we take
ψ0 =

√
M , ψ1 = ξ

√
M and ψ4 = (v2 − 3

2T )
√
M . g is next decomposed into its

hydrodynamical part Pg and non hydrodynamical part g. Hence Pg writes

Pg = p0(x)ψ0 + p1(x)ψ1 + p4(x)ψ4. (3.65)

For α ∈ {A,B} define

ψα0 =
√
Mα, ψα1 = ξ

√
Mα and ψα4 = (v2 − 3

2
T )
√
Mα.

Then (gA, gB) is split into its hydrodynamical part (PAgA, PBgB) and its non
hydrodynamical part (gA, gB). PAgA and PBgB are decomposed into

PAgA = gA0 + gA1 + gA4 , PBgB = gB0 + gB1 + gB4 , (3.66)

with

gαi (x, v) = pαi (x)ψαi (v), i ∈ {0, 1, 4}, α ∈ {A,B}.

Remark that according to the expression of the kernel of the linearized Boltzmann
operator, we have pA1 = pB1 and pA4 = pB4 . From now we set p1 = pA1 = pB1 and
p4 = pA4 = pB4 .
Introduce the quantities

µA = ξ
1
2
∂

∂x
(ln(MA)), µB = ξ

1
2
∂

∂x
(ln(MB)).
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The couples (gA, hA) and (gB , hB) are defined as the solutions to the systems

ξ
∂

∂x
gA + µAgA =

1
ε
LA(gA, g) + L1

A(gA, g) +
1
ε
χγσ

−1
A

(
KA
∗ (h) +K1

∗(h
A)
)
, (3.67)

ξ
∂

∂x
hA =

1
ε
χγK

A
∗ (h) +

1
ε

(−ν + χγK
1
∗)h

A +NA∗(h) + Ñ∗(hA) + ε2dA (3.68)

and

ξ
∂

∂x
gB + µBgB =

1
ε
LB(gB , g) + L1

B(gB , g) +
1
ε
χγσ

−1
B

(
KB
∗ (h) +K1

∗(h
B)
)
, (3.69)

ξ
∂

∂x
hB =

1
ε
χγK

B
∗ (h) +

1
ε

(−ν + χγK
1
∗)h

B +NB∗(h) + Ñ∗(hB) + ε2dB , (3.70)

where

dA = M
− 1

2
∗ DA, dB = M

− 1
2

∗ DB ,

χγ(v) = 1, for |v| ≤ γ, χγ(v) = 0, for |v| ≥ γ, and χγ = 1− χγ .

L = (LA,LB) is the linearized Boltzmann operator for a two component gas defined
by

LA(gA, g) =
1√
MA

(Q(
√
MAgA,M) +Q(MA,

√
Mg)), (3.71)

LB(gB , g) =
1√
MB

(Q(
√
MBgB ,M) +Q(MB ,

√
Mg)). (3.72)

Moreover L1
A, L1

B , KA
∗ , KB

∗ , NA
∗ , NB

∗ , Ñ∗ are defined by

L1
A(gA, g) =

1√
MA

(Q(
√
MAgA, f1 + εf2) +Q(fA1 + εfA2 ,

√
Mg)), (3.73)

L1
B(gB , g) =

1√
MB

(Q(
√
MBgB , f1 + εf2) +Q(fB1 + εfB2 ,

√
Mg)), (3.74)

KA
∗ (f) =

1√
M∗

Q(MA,
√
M∗f), KB

∗ (f) =
1√
M∗

Q(MB ,
√
M∗f),

NA∗(g) =
1√
M∗

Q(fA1 + εfA2 ,
√
M∗g), NB∗(g) =

1√
M∗

Q(fB1 + εfB2 ,
√
M∗g),(3.75)

Ñ∗(g) =
1√
M∗

Q(
√
M∗g, f1 + εf2), (3.76)

and Q(M,
√
M∗h

α) is decomposed into

1√
M∗

Q(M,
√
M∗h

α) = (−ν +K1
∗)h

α, α ∈ {A,B}, (3.77)

where ν, called collision frequency is defined by

ν(x, v) =
∫

R3×S2
〈v∗ − v, ω〉M(x, v∗)dv∗dω.
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Remark 2. In ([14]) the decomposition is different. In that case gA, gB , hA and
hB have to solve

ξ
∂

∂x
gA + µA(gA0 + gA4 ) =

1
ε

1√
MA

(Q(
√
MAgA,M) +Q(MA,

√
Mg))

+
1
ε
χγσ

−1
A

(
KA
∗ (h) +K1

∗(h
A)
)

+ L1
A(gA0 + gA4 , g0 + g4)

+ L̃1
A(gB0 + gB4 ), (3.78)

ξ
∂

∂x
hA + µAσA(gA + gA1 ) =

1
ε
χγK

A
∗ (h) +

1
ε

(−ν + χγK
1
∗)h

A +NA∗(σ(g1 + g) + h)

+ ÑA
∗ (σA(gA + gA1 ) + hA, (σB(gB + gB1 ) + hB))

+ ε2dA (3.79)

and

ξ
∂

∂x
gB + µB(gB0 + gB4 ) =

1
ε

1√
MB

(Q(
√
MBgB ,M) +Q(MB ,

√
Mg))

+
1
ε
χγσ

−1
B

(
KB
∗ (h) +K1

∗(h
B)
)

+ L1
B(gB0 + gB4 , g0 + g4), (3.80)

ξ
∂

∂x
hB + µBσB(gB + gB1 ) =

1
ε
χγK

B
∗ (h) +

1
ε

(−ν + χγK
1
∗)h

B +NB∗(σ(g + g1) + h)

+ ÑB
∗ (σB(gB + gB1 ) + hB) + ε2dB . (3.81)

The operators

NB∗(f), ÑB
∗ (f), ÑA

∗ (f, g), L1
A(f, g), L̃1

A(f),

are analogous to the operators defined in (3.73, 3.74, 3.75, 3.76) and satisfy the
bounds of Lemma 3.1. But this decomposition breaks down for the control of the
rest term for the problem studied in the present paper. This fact is mainly due
to the presence of the tems g1 in the equations defining hA and hB . In ([14]) this
problem is solved because of the boundary conditions which are of Maxwell-diffuse
reflexion type which is not the case here. But the decomposition (3.67, 3.68, 3.69,
3.70) of the present paper can be applied to the case of [20, 21, 14].

Remark 3. In the hard-sphere case, there are two non negative constants ν0 and
ν1 such that the collosion frequency ν satisfies

ν0(1 + |v|) ≤ ν(x, v) ≤ ν1(1 + |v|). (3.82)

Moreover gA, hA, gB , hB satisfy the boundary conditions

gA(−1, v) = 0, ξ > 0, gA(1, v) = 0, ξ < 0,

hA(−1, v) = ζA−M
− 1

2
∗ , ξ > 0, hA(1, v) = ζA+M

− 1
2

∗ , ξ < 0, (3.83)

gB(−1, v) = 0, ξ > 0, gB(1, v) = 0, ξ < 0,

hB(−1, v) = M
− 1

2
∗ ζB−, ξ > 0, hB(1, v) = M

− 1
2

∗ ζB+, ξ < 0. (3.84)

Define also the functions hA−, hA+, hB− and hB+ as follows

hA− = M
− 1

2
∗ ζA−, ξ > 0, hA− = 0, ξ < 0, hA+ = M

− 1
2

∗ ζA+, ξ < 0, hA+ = 0, ξ > 0,

hB− = M
− 1

2
∗ ζB−, ξ > 0, hB− = 0, ξ < 0, hB+ = M

− 1
2

∗ ζB+, ξ < 0, hB+ = 0, ξ > 0.
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We shall control the rest term (RA, RB) by using the norm

|f |r,β0 = sup
x∈[−1,1]

sup
v∈R3

(1 + |v|)r|f(x, v)| exp(β0v
2), (3.85)

for a suitable β0. The same notation will be used for the functions depending only
on the v variable.

3.4. L2 estimates on the rest term. Recall that the norm ‖ ‖ had been defined
in (3.64). First we have the following estimates

Lemma 3.1. For τ defined in Theorem 2.2, the operators, L1
A, L1

B, NA∗, NB∗,
N∗, defined by (3.73, 3.74, 3.75, 3.76) satisfy the inequalities

‖(1 + |v|)−1L1
A(fA, f)‖ ≤ τ(‖fA‖+ ‖f‖), ‖(1 + |v|)−1L1

B(fB , f)‖ ≤ τ(‖fB‖+ ‖f‖),
‖(1 + |v|)−1N∗(f)‖ ≤ τ‖f‖, ‖(1 + |v|)−1NA∗(f)‖ ≤ τ‖f‖, ‖(1 + |v|)−1NB∗(f)‖ ≤ τ‖f‖.

For the proof of lemma 3.1, we refer to ([14]).
Next we will focus on the control of (RA, RB), solution to the linearized problem

(3.60, 3.61) in the norm ‖ ‖ which is resumed in the following proposition.

Proposition 2. There are ε0 > 0, τ0 and c > 0 such that for all ε < ε0 and τ < τ0,
the solutions to (3.67, 3.68, 3.69, 3.70, 3.83, 3.84) satisfy the estimates

‖hA‖+ ‖hB‖ ≤ cε3(‖ dA

(1 + |v|)
‖+ ‖ dB

(1 + |v|)
‖)

+ c
√
ε
(
‖hA−‖+ ‖hA+‖+ ‖hB−‖+ ‖hB+‖

)
, (3.86)

‖gA‖+ ‖gB‖ ≤ cε2(‖ dA

(1 + |v|)
‖+ ‖ dB

(1 + |v|)
‖)

+
c

ε
1
2

(
‖hA−‖+ ‖hA+‖+ ‖hB−‖+ ‖hB+‖

)
, (3.87)

‖PA(gA)‖+ ‖PB(gB)‖ ≤ cε(‖ dA

(1 + |v|)
‖+ ‖ dB

(1 + |v|)
‖)

+
c

ε
3
2

(
‖hA−‖+ ‖hA+‖+ ‖hB−‖+ ‖hB+‖

)
. (3.88)

Remark 4. In the case of Maxwell-diffuse reflexion boundary conditions (see [14])
the estimate obtained for ‖hA‖+‖hB‖ and ‖gA‖+‖gB‖ are of the same order as in
Proposition 2. But for the hydrodynamical part of g, ‖gA1 ‖+ ‖gB1 ‖ are of the same
magnitude as ‖gA‖+‖gB‖ whereas ‖gA0 ‖+‖gB0 ‖+‖gA4 ‖+‖gB4 ‖ is of the same order
as ‖PA(gA)‖ + ‖PB(gB)‖. In the situation of a one component gas, the estimate
on g1 is even of the same order as h. The reason is explained in Remark 5.
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Proof. (Proposition 2). Multiply (3.67) by εgA and (3.69) by εgB , add the obtained
equation and integrate on [−1, 1]× R3 leads to

ε(IgA + IgB ) −
∫

R3

∫ 1

−1

(
LA(gA, g)gA + LB(gB , g)gB

)
dxdv

= ε

∫
R3

∫ 1

−1

(
µA (PAgA)2 + µB (PBgB)2

)
dxdv

+ ε

∫
R3

∫ 1

−1

(
µA (PAgA)ḡA + µB (PBgB)ḡB

)
dxdv

+
∫

R3

∫ 1

−1

(
L1
A(gA, g)gA + L1

B(gB , g)gB
)
dxdv

+ ε

∫
R3

∫ 1

−1

(
DA
√
MAgA +DB

√
MBgB

)
dvdx,

with for any α ∈ {A,B},

Igα =
∫

R3
ξ(gα(1, v))2 dv +

∫
R3
ξ(gα(−1, v))2 dv.

Recall the spectral inequality ([2]),

〈L(gA, gB), (gA, gB)〉 ≥ −γ1(‖gA‖2 + ‖gB‖2), with γ1 > 0. (3.89)

We notice that a new spectral estimate involving the term L1 has been established
in ([6]). By using the spectral inequality (3.89) we get

ε(IgA + IgB ) + γ1(‖ḡA‖2 + ‖gB‖2) ≤ ετ(‖PAgA‖2 + ‖PBgB‖2 + ‖ḡA‖2 + ‖ḡB‖2)

+ ε
(
‖DA‖‖gA‖+ ‖DB‖‖gB‖

)
,

with

DA = χγσ
−1
A

(
KA
∗ (h) +K1

∗(h
A)
)
, DB = χγσ

−1
B

(
KB
∗ (h) +K1

∗(h
B)
)
. (3.90)

Then by choosing τ small enough, it comes that

ε(IgA + IgB ) + γ1(‖ḡA‖2 + ‖gB‖2) ≤ ετ(‖PAgA‖2 + ‖PBgB‖2)

+ ε
(
‖DA‖‖gA‖+ ‖DB‖‖gB‖

)
. (3.91)

In order to control the terms gA1 and gB1 we use the relation

ξ∂x

(√
Mαgα

)
= µαgα +

√
Mαξ∂xg

α α ∈ {A,B}.

Multiply (3.67) by
√
MA, (3.68) by

√
MB , integrate in v and use the previous

relation leads to

∂

∂x

(∫
R3
ξgA
√
MA dv

)
=

1
ε

(∫
R3

√
MADA dv

)
,

∂

∂x

(∫
R3
ξgB
√
MB dv

)
=

1
ε

(∫
R3

√
MBDB dv

)
.
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Hence after integration between −1 and x of the two previous equations, we get

|
∫

R3
ξ gA1
√
MA dv| ≤ |

∫
R3
gA1 (−1, v)

√
MA(−1, v) dv|

+ |
∫

R3
ξ ḡB

√
MA dv|+ 1

ε
|
∫

R3

√
MADA dv|,

|
∫

R3
ξ gB1

√
MB dv| ≤ |

∫
R3
gB1 (−1, v)

√
MB(−1, v) dv|

+ |
∫

R3
ξ ḡB

√
MB dv|+ 1

ε
|
∫

R3

√
MBDB dv|.

Then

|
∫

R3
ξ gA1
√
MA dv| ≤ c

(
IgA + ‖ḡA‖+

1
ε
‖DA‖

)
,

|
∫

R3
ξ gB1

√
MB dv| ≤ c

(
IgB + ‖ḡB‖+

1
ε
‖DB‖

)
and finally we obtain the following estimates on ‖gA1 ‖ and ‖gB1 ‖,

‖gA1 ‖ ≤
(
IgA + ‖ḡA‖+

1
ε
‖DA‖

)
, ‖gB1 ‖ ≤

(
IgB + ‖ḡB‖+

1
ε
‖DB‖

)
. (3.92)

Remark 5. In ([14]) and in ([20, 21]) the terms g1 are controled by using the
Maxwell diffuse boundary conditions. More precisely in ([14]), the B component
satisfying diffuse reflection boundary conditions, its flux satisfies∫

R3
ξ(gB + hB)dv = 0. (3.93)

Hence we get the inequality

‖gB1 ‖ ≤ ‖ḡB‖+ ‖hB‖. (3.94)

Moreover due to the expression of the kernel of the linearized Boltzmann operator,
the estimate (3.94) is also satisfied by gA1 . In the situation of a one component gas
([20, 21]), the inequality ‖g1‖ ≤ ‖h‖ is obtained from the same arguments. But in
the present case, the relation (3.93) is not true.

Multiply (3.67) by ξ
√
MA, (3.69) by ξ

√
MB and add the two obtained equations

∂

∂x

(∫
R3
ξ2
√
MAgA dv +

∫
R3
ξ2
√
MBgB dv

)
=

1
ε

∫
R3
ξ
(
DA +DB

)
dv.

Next by setting

gAx2 =
∫

R3
ξ2
√
MA ḡA dv, gBx2 =

∫
R3
ξ2
√
MB ḡB dv,

and after integration in the x variable between −1 and x, it holds that

|
∫

R3
ξ2
√
MAgA dv +

∫
R3
ξ2
√
MBgB dv|

≤ |
∫

R3
ξ2
√
MAgA(−1, v) dv +

∫
R3
ξ2
√
MBgB(−1, v) dv|

+|
∫

R3
ξ(
√
MADA +

√
MBDB) dv|+ 1

ε
|
∫ 1

−1

ξ2 (gAx2 + gBx2) dx|.
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Therefore

‖gA0 + gB0 + 3gA4 + 3gB4 ‖2 ≤ c
(
IgA + IgB + ‖ḡA‖+ ‖ḡB‖+

1
ε

(‖DA|+ ‖DB‖)
)
.

In order to obtain an extimate on ‖gA4 ‖ + ‖gB4 ‖, consider (ξB, ξB) ∈ Ker(L)⊥

solution to

(LA(ξB),LB(ξB)) = (ξ(v2 − 5
2

)
√
MA, ξ(v2 − 5

2
)
√
MB).

Hence multiplying (3.67) by ξ√
T
B( |v|√

T
) and (3.69) by ξ√

T
B( |v|√

T
) gives∫

R3
B(
|v|√
T

)
ξ2√
T

∂

∂x
(
√
MAgA)dv +

∫
R3
B(
|v|√
T

)
ξ2√
T

∂

∂x
(
√
MBgB)dv

=
∫

R3

ξ√
T
B(
|v|√
T

)
√
MALA(gA, g)dv +

∫
R3

ξ√
T

√
MBB(

|v|√
T

)LB(gB , g)dv

+
∫

R3

ξ√
T
B(
|v|√
T

)
√
MAL1

A(gA, g)dv +
∫

R3

ξ√
T
B(
|v|√
T

)
√
MBL1

B(gB , g)dv

+
1
ε

∫
R3

ξ√
T
B(
|v|√
T

)
(√

MADA +
√
MBDB

)
dv. (3.95)

Moreover L being self adjoint, we have∫
R3

ξ√
T
B(
|v|√
T

)
√
MALA(gA, g)dv +

∫
R3

ξ√
T

√
MBB(

|v|√
T

)LB(gB , g)dv

=
∫

R3
(
√
MAḡA +

√
MB ḡB)

ξ√
T

|v|2

T
dv.

Therefore by using the previous relation, (3.95) writes

∂

∂x

(∫
R3
B(
|v|√
T

)
ξ2√
T

√
MAgA dv

)
+

∂

∂x

(∫
R3
B(
|v|√
T

)
ξ2√
T

√
MBgB dv

)
=
∫

R3

∂

∂x

(
ξ2√
T
B(
|v|√
T

)
)(√

MAgA +
√
MBgB

)
dv

+
1
ε

∫
R3

(
√
MAḡA +

√
MB ḡB)

ξ√
T

|v|2

T
dv

+
∫

R3

(
ξ√
T
B(
|v|√
T

)
)(√

MAL1
A(gA, g) +

√
MBL1

B(gB , g)
)
dv

+
∫

R3

ξ√
T
B(
|v|√
T

)
(√

MADA +
√
MBDB

)
dv. (3.96)

But∫
R3
ξ2B(|v|)

√
MAgA dv +

∫
R3
ξ2B(|v|)

√
MBgB dv = k2 p4 + gAx2B + gBx2B ,

with

k2 =
∫

R3
ξ2ψ4 B(|v|)

√
MA dv +

∫
R3
ξ2ψ4 B(|v|)

√
MB dv.
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Moreover by using the spectral inequality (3.89), it comes that k2 < 0. Then the
equation (3.96) reads

∂

∂x

(
1√
T

(k2p4(x) + gAx2B + gBx2B)
)

=
1
ε

(gAx2 + gBx2) +
∫

R3

∂

∂x
(ξ̃B̃) (

√
MADA +

√
MBDB) dv

+
∫

R3

(
ξ√
T
B(
|v|√
T

)
)(√

MAL1
A(gA, g) +

√
MBL1

B(gB , g)
)
dv

+
1
ε

∫
R3
ξB(|v|) (

√
MADA +

√
MBDB) dv, (3.97)

with

gAx2 =
∫

R3
ξv2
√
MAḡA dv, gBx2 =

∫
R3
ξv2
√
MB ḡB dv.

Next we aim to determine gAx2 and gBx2. Multiply (3.67) by |v|2
√
MA, (3.69) by

|v|2
√
MB , integrate with respect to the v variable and add the two equations gives∫

R3
ξ|v|2 ∂

∂x

(√
MAgA +

√
MBgB

)
dv =

1
ε

∫
R3
|v|2
(√

MADA +
√
MBDB

)
dv.

Hence by integrating between −1 and x, there is a nonnegative constant c1 such
that

(gAx2 + gBx2) = c1 +
1
ε

∫ x

1

∫
R3
|v|2
(√

MADA +
√
MBDB

)
dv.

So by plugging the previous expression of gAx2 + gBx2 into (3.97), it holds that

∂

∂x
(k4p4(x) + gAx2B + gBx2B) =

c1
ε

+
∫

R3
ξB(|v|)

(
L1
A(gA, g)

√
MA + L1

B(gB , g)
√
MB

)
dv

−
∫

R3

∂

∂x
(B(
|v|√
T

))
ξ√
T

)
(√

MAgA +
√
MBgB

)
dv

+
1
ε

∫ x

1

∫
R3
|v|2
(√

MADA +
√
MBDB

)
dv.

Next by setting

p̃4 = k2p4 + gAx2B + gBx2B

and

D2 =
∫

R3
ξB
(
L1
A(gA, g)

√
MA + L1

B(gB , g)
√
MB

)
dv

−
∫

R3

∂

∂x
(B̃ξ̃)

(√
MAgA +

√
MBgB

)
dv

+
∫

R3
ξ̃B(|ṽ|)

(√
MADA +

√
MBDB

)
dv, (3.98)

we get the relation

p̃′4(x) =
c1
ε

+D2. (3.99)

By integrating (3.99) between 1 and −1 we get

p̃4(−1)− p̃4(1) = −2c1
ε

+
∫ 1

−1

D2(s) ds
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and by integrating (3.99) between 1 and x we get

p̃4(x)− p̃4(1) = −x− 1
ε

c1 +
∫ x

1

D2(s) ds.

Then by eliminating c1 in the previous equation we get for any x ∈ [−1, 1]

p̃4(x) = p̃4(1) +
x− 1

2

(
p̃4(1)− p̃4(−1) +

∫ 1

−1

D2(s) ds
)

+
∫ x

1

D2(s) ds. (3.100)

Next we aim to control ‖D2‖. Firstly

∂x(
ξ√
T
B(
|v|√
T

)) = − ξ

T
3
2
∂xT B(

|v|√
T

) +−ξ|v|
T 2
B′( |v|√

T
)∂xT.

Hence according to the estimate (2.46) on ∂xT , it holds that

‖∂x(
ξ√
T
B(
|v|√
T

))‖ ≤ c τ.

Moreover according to Lemma 3.1, we have

|
∫

R3
ξB(|v|)

(
L1
A(gA, g)

√
MA + L1

B(gB , g)
√
MB

)
dv| ≤ c τ (‖gA‖+ ‖gB‖).

So ‖D2‖ satisfies the estimate

‖D2‖ ≤ c τ(‖gA0 ‖+ ‖gB0 ‖+ ‖gA1 ‖+ ‖gB1 ‖+ ‖gA4 ‖+ ‖gB4 ‖+ ‖ḡA‖+ ‖ḡB‖)
+ c(‖DA‖+ ‖DB‖).

Therefore from relation (3.100) we obtain

‖gA4 ‖+ ‖gB4 ‖ ≤ cτ
(
‖gA0 ‖+ ‖gB0 ‖+ ‖gA1 ‖+ ‖gB1 ‖+ ‖gA4 ‖+ ‖gB4 ‖

)
+ c(‖ḡA‖+ ‖ḡB‖)

+ c (‖DA‖+ ‖DB‖).

So by using (3.91) and by taking τ small enough we get

‖gA0 ‖+ ‖gB0 ‖+ ‖gA1 ‖+ ‖gB1 ‖+ ‖gA4 ‖+ ‖gB4 ‖ ≤
c

ε
(‖DA‖+ ‖DB‖).

Moreover by using again (3.91), it holds that

‖ḡA‖+ ‖ḡB‖ ≤ c (‖DA‖+ ‖DB‖).

Then gA and gB have been estimated in terms of ‖DA‖ and ‖DB‖. Hence it remains
to control hA and hB .
Control of hA and hB .
Multiply (3.68) by εhA, (3.70) by εhB and integrate on R3× [−1, 1]. By setting for
α ∈ {A,B},

Ihα =
∫

R3
ξ(hα(1, v))2dv −

∫
R3
ξ(hα(−1, v))2dv,
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it holds that

ε(IhA + IhB ) +
∫

R3

∫ 1

−1

ν(hA)2 + (hB)2)dxdv =
∫

R3

∫ 1

−1

((χγK
A
∗ )h)hAdvdx

+
∫

R3

∫ 1

−1

((χγK
1
∗)h

A)hAdvdx+
∫

R3

∫ 1

−1

((χγK
B
∗ )h)hBdvdx+

∫
R3

∫ 1

−1

((χγK
1
∗)h

B)hBdvdx

+ε
∫

R3

∫ 1

−1

(NA∗(h) + Ñ∗(hA))hAdvdx+ ε

∫
R3

∫ 1

−1

(NB∗(h) + Ñ∗(hB))hBdvdx

+ε3
∫

R3

∫ 1

−1

(dAhA + dBhB)dvdx.

From (3.82) and Lemma 3.1, we get

ε(IhA + IhB ) + ν0(‖hA‖2 + ‖hB‖2) ≤
∣∣∣∣∫

R3

∫ 1

−1

(χγK
1
∗h

A)hAdvdx
∣∣∣∣

+
∣∣∣∣∫

R3

∫ 1

−1

(χγK
A
∗ h)hAdvdx

∣∣∣∣+
∣∣∣∣∫

R3

∫ 1

−1

(χγK
1
∗h

B)hBdvdx
∣∣∣∣+
∣∣∣∣∫

R3

∫ 1

−1

(χγK
B
∗ h)hBdvdx

∣∣∣∣
+cτε(‖hA‖+ ‖hB‖)(‖hA‖+ ‖hB‖) + ε3(‖dA‖ ‖hA‖+ ‖dB‖ ‖hB‖).

By continuity of K1
∗ , K

A
∗ and KB

∗ , it holds that∫ 1

−1

∫
R3

(χγK
1
∗h

A)h dvdx ≤ ‖h‖‖h
A‖

(1 + γ)
1
2
, |
∫

R3

∫ 1

−1

(χγK
A
∗ h)hAdvdx| ≤ ‖h

A‖‖h‖
(1 + γ)

1
2
,

|
∫

R3

∫ 1

−1

(χγK
B
∗ h)hBdvdx| ≤ ‖h‖‖h

A‖
(1 + γ)

1
2
.

Moreover, according to the boundary conditions (3.83, 3.84) satisfied by hA and
hB ,

IhA ≥ −c(‖hA−‖2 + ‖hA+‖2), IhB ≥ −c
(
‖hB−‖2 + ‖hB+‖2

)
.

Hence

‖hA‖2 + ‖hB‖2 ≤ cε(‖hA−‖2 + ‖hA+‖2 + ‖hB−‖2 + ‖hB+‖2 +
c

(1 + γ)
1
2

(‖hA‖2 + ‖hB‖2)

+ cτε(‖hA‖+ ‖hB‖)‖hA‖+ ε3(‖hA‖ ‖ dA

1 + |v|
‖+ ‖hB‖ ‖ dB

1 + |v|
‖)

and (3.86) follows. After recalling that DA and DB have been defined in (3.90) we
finally get an estimate on ‖DA‖+‖DB‖ which leads to the control of PAgA, PBgB ,
ḡA and ḡB .

3.5. L∞ estimates on the rest term. This subsection is devoted to the L∞

estimate of the linearized rest term (RA, RB) solution to (3.60, 3.61). This control
is performed by using first a L∞ bound on gA, gB , hA and hB with the norm

|f |r = sup
x∈[−1,1]

sup
v∈R3

(1 + |v|)r|f(x, v)|.

The arguments are the same as the ones developped in [14]. But for the sake of
clarity we will recall some elements. The control is performed by introducing the
following intermediate norm between | |r and ‖ ‖

N(f) = sup
x∈[−1,1]

(∫
R3
|f(x, v)|2dv

) 1
2

.
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By considering the exponential formulation of (3.67, 3.69) together with the esti-
mates (3.86, 3.87, 3.88) we obtain the L∞ estimate

(
|gA|r + |gB |r

)
≤ c

√
ε

(
‖ dA

(1 + |v|)
‖+ ‖ dB

(1 + |v|)
‖
)

+ cHγ(|hA|r + |hB |r)

+
c

ε2
(|hA−|r + |hA+|r + |hB−|r + |hB+|r), (3.101)

|hA|r + |hB |r ≤ cε
3
2 ( ‖ dA

(1 + |v|)
‖+ ‖ dB

(1 + |v|)
‖) + ε

5
2 (|ν−1dA|r + |ν−1dB |r)

+
c

ε2
(|hA−|r + |hA+|r + |hB−|r + |hB+|r). (3.102)

As a consequence we get the following bounds on the solution (RA, RB) to the
linearized problem (3.60, 3.61).

Proposition 3. For all r ≥ 3, there are c, ε0, η0 and β0 such that for all ε < ε0
and η < η0, (RA, RB) solutions to (3.60, 3.61) satisfy the estimates

|RA|r,β0 + |RB |r,β0 ≤ cε
1
2 (|DA|r−1,β0 + |DB |r−1,β0)

+
c

ε2
(|ζA−|r,β0 + |ζB−|r,β0 + |ζA+|r,β0 + |ζB+|r,β0).

The proof is analogous to the one given in [14]. It uses the L∞ bounds on gA,
hA, gB , hB (3.101, 3.102) and the properties on the Boltzmann operator given in
([22], [23]). For more precisions we refer to this paper.

3.6. Convergence of the iterative process. This subsection deals with the rest
terms (RA, RB) of the expansion given in Theorem 1.1. We recall that (RA, RB)
is solutions to the non linear system (3.53, 3.54) and is constructed as the limit of
a sequence of iterations of linearized problems of the type (3.60, 3.61). By using
Proposition 3, this sequence is proved to be a converging sequence and satisfies the
following estimates

Proposition 4. For all r ≥ 3, there is c, c′, ε0, τ0 and β0 such that for all ε < ε0,
and τ < τ0, the problem (3.53, 3.54) has a unique solution (RA, RB) satisfying

|RA|r,β0 + |RB |r,β0 ≤ c
(
ε

3
2 (|A|r,β0 + |B|r,β0) + exp(−c

′

ε
)
)
.

For the proof of Proposition 4 we refer to ([14]). Therefore we deduce Theorem 1.1.

Proof. (Theorem 1.1). By arguing as in ([14]), it can be shown that
(|A|r,β0 + |B|r,β0) = O( 1

ε4 ). For pBII close enough to pBI and TII close enough to 1,
the asymptotic expansion

(fAH0 + εfA1 + ε2fA2 + ε3RA, fBH0 + εfB1 + ε2fB2 + ε3RB)

has been determined to define (fA, fB). For ε small enough Proposition 4 controls
the rest term (RA, RB) of the expansion.
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