
NOTES ON CODE-BASED CRYPTOGRAPHY

GILLES ZÉMOR

1. Background on codes

1.1. Error-correcting codes, Hamming distance. Let Fq denote the finite
field on q elements. An error-correcting code, in all generality, is a just a subset
of Fn

q . A linear code is a linear subspace of Fn
q . We will only be dealing with linear

codes, so most of the time we will simply refer to them as codes. The elements of
a code are called codevectors or codewords.

Definition 1.1. The Hamming distance d(x,y) between any two vectors x =
[x1, . . . , xn],y = [y1, . . . , yn] of Fn

q is the number of coordinates where x and y
differ. d(x,y) = #{i, xi ̸= yi}.

The function d(·, ·) is indeed a distance, it satisfies the triangular inequality

d(x,y) ⩽ d(x, z) + d(z,y)

and also invariance by translation: d(x,y) = d(x + z,y + z). The weight of a
vector x, denoted by |x|, is its distance to the zero vector, in other words it is the
number of its non-zero coordinates. The support of x is the set of positions i of its
non-zero coordinates xi.

Definition 1.2. The minimum distance dmin(C) of a linear code C is the smallest
distance between two distinct codewords. It is also equal to the smallest weight of
a non-zero codeword.

The parameters of a code C are denoted by [n, k, d]. The number n is the dimension
of the ambient space Fn

q and is called the length, k is the dimension of the code,
k = dimFq C, and d is the code minimum distance. If it is unclear what is the finite
field Fq over which C is defined, we may write [n, k, d]q.

Decoding problem: it takes as input a vector y ∈ Fn
q and asks for a codeword c

that minimises the distance d(c,y) to y. There may be several solutions to the
decoding problem.

Date: September 2024.
1

NOTES ON CODE-BASED CRYPTOGRAPHY 2

Error correction. Suppose a codeword c is corrupted so that some of its coor-
dinates are changed. It is converted to some vector y = c + e. The vector e is
called the error vector. If the weight of the error vector is not too large, solving
the decoding problem with input y recovers the original codeword c.

Theorem 1.3. If y = c+ e where c is a codeword of the code C, and if the error
vector e has weight < dmin(C)/2, then the codeword c is the unique solution to the
decoding problem with input y.

Proof. Let c′ be a solution to the decoding problem. By the triangular inequality
we have

d(c, c′) ⩽ d(c,y) + d(c′,y)

but d(c′,y) ⩽ d(c,y) < dmin(C)/2, so we have d(c, c′) < dmin(C). Therefore we
must have c′ = c. □

Definition 1.4. The matrix G is said to be a generator (or generating) matrix of
the code C, if its rows form a basis of C as a vector space. If a generator matrix
is of the form [Ik |A], where Ik is the k × k identity matrix, it is said to be in
systematic form.

1.2. Duality and the syndrome function.

Dual code. The inner product of two vectors x = [x1, . . . , xn] and y = [y1, . . . , yn]
is denoted by

⟨x,y⟩ = x1y1 + · · ·+ xnyn ∈ Fq.

The dual (or orthogonal) code C⊥ of a code C is defined as

C⊥ = {x ∈ Fn
q , ∀c ∈ C, ⟨x, c⟩ = 0}.

Note that if G1, . . .Gk are the rows of a generator matrix G for C, then

C⊥ = {x ∈ Fn
q , ⟨x,Gi⟩ = 0, i = 1, . . . , k}.

We have:

Proposition 1.5. For any code C in Fn
q ,

(1) dimC + dimC⊥ = n.

To find a generator matrix of the dual code C⊥ given a generator matrix of a code
C, the following proposition is useful.

Proposition 1.6. If [Ik |A] is a generator matrix for a code C, then [−A⊺ | In−k]
is a generator matrix for C⊥.

NOTES ON CODE-BASED CRYPTOGRAPHY 3

Parity-check matrix, syndrome function. A generator matrix H of the dual
code C⊥ of a code C is called a parity-check matrix of the code C. Given a
parity-check matrix H of the code C, the associated syndrome function is defined
as:

σ : Fn
q → Fn−k

q

x 7→ σ(x) = Hx⊺

σ(x) =

 ⟨H1,x⟩
· · ·

⟨Hn−k,x⟩


where the His are the rows of H. However, one usually prefers to think of the
syndrome function as given by the expression:

(2) σ(x) = x1h1 + x2h2 + · · ·+ xnhn

where h1,h2, . . . ,hn denote the columns of the matrix H. From the definition of
C⊥ and (1), we have (C⊥)⊥ = C, and therefore:

Proposition 1.7. Let C be a code and σ an associated syndrome function. For
x ∈ Fn

q , we have x ∈ C iff σ(x) = 0.

Dual form of the decoding problem: it takes as input an element s ∈ Fn−k
q of

the syndrome space, and asks for a vector e ∈ Fn
q of minimum weight such that

σ(e) = s. This form of the decoding problem is also referred to as the syndrome
decoding problem.

Note that the two forms of the decoding problem are really equivalent. If we
can solve the syndrome version and we want to find the closest codeword to y,
we compute s = σ(y) and then solve the syndrome decoding problem to find e
of minimum weight such that σ(e) = s. Then we set c = y − e: since σ(c) =
σ(y) − σ(e) = 0 Proposition 1.7 implies that c is a codeword and it must be a
solution to the decoding problem. Conversely, if we are given s ∈ Fn−k

q and we
want to find e of minimum weight such that σ(e) = s, then we can first find
some arbitrary solution y to the system of linear equations σ(y) = s (without any
weight requirements), which is algorithmically simple linear algebra, and then we
solve the decoding problem in its original form to find a codeword c closest to y,
after which e = y − c is the required solution to the syndrome decoding problem
with input s.

Example 1.8. The Hamming code of length 7. Let

H =

1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1



NOTES ON CODE-BASED CRYPTOGRAPHY 4

and define C to be the binary code (code over F2) defined by the parity-check
matrix H. Proposition 1.7 together with the expression (2) of the syndrome imply
that words of weight 1, 2 cannot be codewords, since all columns of H are non-zero
and distinct from each other. There are several (how many ?) triples of columns
that sum to zero, so the code minimum distance is 3. The parameters of the code
are [7, 4, 3]. Furthermore, since every non-zero element of F3

2 is a column of H, we
have that every possible input y ̸∈ C to the decoding problem for C has a solution
that is at distance 1 to y.

2. Reed-Solomon codes

2.1. Narrow-sense Reed-Solomon codes.

Definition 2.1. Let 1 ⩽ k ⩽ n ⩽ q, and let α1, . . . αn be distinct elements of Fq.
We denote α = [α1, . . . , αn]. The narrow-sense Reed-Solomon code over Fq defined
by α and k is the set of n-tuples

[f(α1), f(α2), . . . , f(αn)]

where f(X) ranges over all polynomials of Fq[X] of degree < k.

A Reed-Solomon code C is clearly a linear code. Since a non-zero polynomial of
degree < k ⩽ n cannot have n roots, the map

f(X) 7→ [f(α1), f(α2), . . . , f(αn)]

is injective, and the dimension of C is that of the space of polynomials of degree
< k, namely dimC = k. By the same number of roots argument, a non-zero
codeword of C has at most k−1 zero coordinates, so its weight is at least n−k+1.
Therefore dmin(C) ⩾ n− k+1. The following theorem tells us that this inequality
must actually be an equality.

Theorem 2.2. (Singleton bound). The parameters [n, k, d] of a code satisfy the
inequality

d ⩽ n− k + 1.

Proof. Consider the linear map
C → Fk−1

q

[x1, . . . , xn] 7→ [x1, . . . , xk−1].

It takes a space of dimension k (the code C) to a space of dimension k − 1, so it
has a non-zero kernel. A non-zero vector of the kernel is a codeword with (k − 1)
zero coordinates, so it has weight ⩽ n− k + 1. □

A code satisfying the above Singleton bound is called an MDS code. They are
optimal, meaning that any code with the same length and dimension cannot have
a larger minimum distance. Altogether we have just proved:

NOTES ON CODE-BASED CRYPTOGRAPHY 5

Theorem 2.3. The Reed-Solomon code over Fq defined by α and k, denoted here-
after by RSk(α), has parameters

[n, k, d = n− k + 1]

and is therefore an MDS code.

Let us mention two useful facts on MDS codes.

Proposition 2.4. Let G be a k × n generator matrix of an [n, k, d] code C. The
code C is an MDS code iff every k × k submatrix of G is non-singular.

Proof. A vector c of C has weight < n−k+1 iff it has at least k coordinates equal
to zero. This happens iff some non-trivial linear combination of the rows of G is
zero on k coordinates. But this means exactly that some k × k submatrix of G
has some linear combination of its rows equal to zero, i.e. is singular over Fq. □

Theorem 2.5. The dual of an MDS code is an MDS code.

Proof. Let C be an MDS code of length n and dimension k with generator ma-
trix G. The dual code C⊥ has therefore G as a parity-check matrix. Let σ be
the associated syndrome function defined by the matrix G. Since every k × k
submatrix of G is non-singular, every non-trivial linear combination of at most
k columns of G is non-zero. From Proposition 1.7 we therefore have that any
codeword of C⊥ must have weight at least k + 1, which means that C⊥ is MDS
since it has dimension n− k. □

Before generalising the definition of Reed-Solomon codes, let us mention:

Proposition 2.6. The matrix

G =


1 1 · · · 1
α1 α2 · · · αn

α2
1 α2

2 · · · α2
n

· · · · · · · · · · · ·
αk−1
1 αk−1

2 · · · αk−1
n


is a generator matrix for the Reed-Solomon code RSk(α).

Proof. The rows of the matrix correspond to the evaluation of the polynomials
1, X,X2, . . . , Xk−1. □

2.2. Generalised Reed-Solomon codes. We generalise slightly the definition
of a Reed-Solomon code. Let α = [α1, . . . , αn] and β = [β1, . . . , βn], where the αi

are distinct elements of Fq as before, and where the βi are in Fq, but not necessarily
distinct, and are non-zero.

NOTES ON CODE-BASED CRYPTOGRAPHY 6

Definition 2.7. The (generalised) Reed-Solomon code over Fq defined by k, 1 ⩽
k ⩽ n ⩽ q, and by α and β, denoted by RSk(α,β), is the set of n-tuples

[β1f(α1), β2f(α2), . . . , βnf(αn)]

where f(X) ranges over all polynomials of Fq[X] of degree < k. From now on
we refer to generalised Reed-Solomon codes simply as Reed-Solomon codes. Note
that the narrow-sense Reed-Solomon code RSk(α) is equal to RSk(α,β), with
β = (1, 1, . . . 1). All previous arguments carry over straightforwardly and we now
have:

Theorem 2.8. The RS codes RSk(α,β) have parameters [n, k, d = n− k + 1].

Proposition 2.9. The matrix

G =


β1 β2 · · · βn

β1α1 β2α2 · · · βnαn

β1α
2
1 β2α

2
2 · · · βnα

2
n

· · · · · · · · · · · ·
β1α

k−1
1 β2α

k−1
2 · · · βnα

k−1
n


is a generator matrix for the Reed-Solomon code RSk(α,β).

The following notion will be useful to find the dual of an RS code.

2.3. Star products. If x = [x1, . . . , xn],y = [y1, . . . , yn] ∈ Fn
q , let us define the

coordinate-wise product of x and y:

x ∗ y = [x1y1, x2y2, . . . , xnyn].

To lighten notation, instead of x∗y we will simply write xy, which, in our context,
is unlikely to be confused with some other product structure. Notice that we have:

⟨x,y⟩ = ⟨xy,1⟩
where 1 denotes the all-one vector 1 = [1, 1, . . . , 1]. More generally we have

(3) ⟨xz,y⟩ = ⟨x,yz⟩.

Remark 2.10. Notice that the generator matrix G of the RS code RSk(α,β) given
by Proposition 2.9 has rows that may be conveniently thought of as the geometric
progression β,βα,βα2, . . . ,βαk−1.

Definition 2.11. If B and C are two codes of length n over Fq, we define their
star product (also called Hadamard product, or Schur product) B ∗C as the linear
span of all products bc, for all b ∈ B, c ∈ C.

Again we will mostly write BC instead of B ∗C and, similarly, use the shorthand
C2 to denote C ∗C. Context should dispel any confusion with Cartesian products.

NOTES ON CODE-BASED CRYPTOGRAPHY 7

Remark 2.12. If B and C are two codes of length n and dimensions k and ℓ
respectively, and if b1, . . . ,bk and c1, . . . , cℓ are bases of B and C respectively, then
the code BC is generated by the set of products bicj of basis vectors, i = 1, . . . , k
j = 1, . . . , ℓ. In particular we have

dimB ∗ C ⩽ dimB dimC

though the actual dimension of B ∗ C may sometimes be much smaller.

Finally, notice that we have:

Proposition 2.13. If B = RSk(α,β) and C = RSℓ(α,γ), then

B ∗ C = BC = RSk+ℓ−1(α,βγ)

(with the convention that if k+ℓ−1 > n, then RSk+ℓ−1() is defined as the whole
space).

2.4. The dual of a Reed-Solomon code.

Theorem 2.14. The dual of a Reed-Solomon code RSk(α,β) is a Reed-Solomon
code RSn−k(α,γ) for some vector γ = [γ1, . . . , γn].

Proof. Let α and β be fixed. Consider the Reed-Solomon code Cn−1 = RSn−1(α,β)
of dimension n− 1. Let us set γ to be a non-zero codeword of the dual code C⊥

n−1.
Since Cn−1 has dimension n− 1, the vector γ is uniquely defined up to multiplica-
tion by a non-zero element of Fq. Since Cn−1 is MDS its dual is MDS (Theorem 2.5),
which means that γ has weight n, i.e. all the γi are non-zero. It makes sense there-
fore to talk about Reed-Solomon codes RSk(α,γ) and our choice of γ means that
we have RSn−1(α,β)⊥ = RS1(α,γ). Equivalently, from Remark 2.10 we have

⟨βαi,γ⟩ = 0 for all i = 0 . . . n− 2.

Applying (3) to the above for i = 1, . . . n− 2, we obtain

⟨βαi,γα⟩ = 0 for all i = 0 . . . n− 3.

We therefore have that both γ and γα are orthogonal to RSn−2(α,β), mean-
ing that RSn−2(α,β)⊥ = RS2(α,γ). Continuing in this way we obtain that
RSk(α,β)⊥ = RSn−k(α,γ) for every k. □

Computing γ from α and β is straightforward linear algebra (Gaussian elimina-
tion). It may be tedious by hand though, but is simple in some cases, for example:

– Exercice 1. Let n = q − 1 and α1, . . . , αn be the non-zero elements of Fq.

(1) Show that α1 + · · ·+ αn = 0.
(2) Show that αi

1 + · · · + αi
n = −1 if i = 0 mod n and αi

1 + · · · + αi
n = 0

otherwise.

NOTES ON CODE-BASED CRYPTOGRAPHY 8

(3) Show that if β = 1, then γ = α. More generally, show that we have
γ = αβ−1 (all coordinates of β are non-zero, so it is invertible for the star
product).

2.5. Decoding Reed-Solomon codes. Let C be the RSk(α,β) Reed-Solomon
code over Fq, for some α,β. Let c be a codeword and suppose that it is corrupted
in t positions, so that we are given a vector y ∈ Fn

q , such that y = c + e with
|e| = t. We suppose furthermore that t < dmin/2, equivalently t ⩽ (n− k)/2. The
goal is to recover c with an algorithm of reasonable complexity.

The key to the decoding algorithm is to introduce an auxiliary Reed-Solomon
code, which is L = RSt+1(α,1) = RSt+1(α) and is called the error-locator code
(or simply locator code). Note from Proposition 2.13 that the star product Π = CL
is the Reed-Solomon code RSk+t(α,β).

Note that there exists a non-zero codeword ℓ of L that is zero on the t positions
in error, i.e. the support of e. This is simply because L has been chosen of
dimension t + 1. Alternatively, we can think of such a codeword as being defined
by a polynomial f(X) of degree t that is zero on the values αi that define the
support of e. For such a vector ℓ we therefore have, from y = c+ e and eℓ = 0,

yℓ = cℓ+ eℓ = cℓ.

Therefore, by definition of the star product, we have yℓ ∈ Π. So the first step of
the decoding procedure is to localise the errors. That means find ℓ ∈ L of weight
n − t such that yℓ = 0. We now know that such a ℓ is a solution of yℓ ∈ Π.
This is simply a linear system. Concretely, we compute yℓ0,yℓ1, . . . ,yℓt where
ℓ0, ℓ1, . . . , ℓt is a fixed basis of the code L. We write

(4) ℓ = λ0ℓ0 + λ1ℓ1 + · · ·+ λtℓt

and define the syndrome function σ for the code Π (by means of a parity-check
matrix of Π that can be precomputed). The condition yℓ ∈ Π gets therefore
rewritten as:

σ(yℓ) = λ0σ(yℓ0) + λ1σ(yℓ1) + · · ·+ λtσ(yℓt) = 0.

So we solve this linear system in the variables λ0, λ1, . . . , λt which gives the required
value of ℓ defined by (4).

Now we know that among the solutions to the above linear system there must be
one ℓ that is zero on the positions in error. But could there be other “parasite”
solutions ? The answer is no, because if yℓ ∈ Π, then from y = c+ e and cℓ ∈ Π
we have eℓ ∈ Π. But Π is a Reed-Solomon code of dimension k + t, and therefore
of minimum distance n − k − t + 1 which is greater than t by our assumption
t ⩽ (n − k)/2. So because |eℓ| ⩽ |e| = t, it must be the case that eℓ = 0.
Therefore, any non-zero solution ℓ to yℓ ∈ Π will be a vector with exactly t zero

NOTES ON CODE-BASED CRYPTOGRAPHY 9

coordinates (there can’t be more because the minimum distance of the RS code L
is n− t), which correspond exactly to the positions in error.

Summarising:

Decoding algorithm for C = RSk(α,β).

Input: y = c+ e, |e| = t.

Set ℓ0 = 1, ℓ1 = α, . . . , ℓt = αt.

Define a syndrome function σ for the code Π = RSk+t(α,β).

Compute σ(yℓ0), σ(yℓ1), . . . , σ(yℓt).

Solve the linear system λ0σ(yℓ0) + λ1σ(yℓ1) + · · ·+ λtσ(yℓt) = 0 in the inde-
terminates λi ∈ Fq and choose any non-zero solution.

Compute the codeword ℓ = [ℓ1, ℓ2, . . . , ℓn] = λ0ℓ0 + λ1ℓ1 + · · ·+ λtℓt of L.

For every i such that ℓi ̸= 0, declare the position i to be error-free, i.e. set
ci = yi.

Let E = {i, ℓi = 0}. This is the set of positions in error. To recover the missing
coordinates ci, i ∈ E, solve the linear system in the indeterminates ci∑

i∈E

cihi +
∑
i ̸∈E

yihi = 0

where h1, . . . ,hn are the columns of a parity-check matrix H of C.

Output c = [c1, . . . , cn].

Remark 2.15. For the above algorithm we have implicitly supposed that the num-
ber t of errors is known to the decoder, which will be the typical cryptography
setting. However it may often be that t is only known to be an upper bound on
the actual number of errors. In this case the algorithm runs without any changes,
and the same arguments prove that it yields the correct result. What will happen
is that there will be more available solutions λ0, . . . , λt to the linear system, but
any non-zero solution will still work: it will also be possible that |E| < t, and
that some values of i ∈ E will turn out to also be error-free coordinates for c, i.e.
ci = yi.

3. Goppa codes

3.1. Alternant codes. Suppose that we want codes over Fq of length n signifi-
cantly larger than q. Then the Reed-Solomon construction does not work because
it is restricted to n ⩽ q (actually the Reed-Solomon construction generalises to
n = q + 1, but this makes little difference). This is typically the case for small

NOTES ON CODE-BASED CRYPTOGRAPHY 10

values of q, notably for q = 2. We don’t necessarily have to forget about the Reed-
Solomon construction altogether though: what we can do is take a Reed-Solomon
code C of length n over an extension field Fqm of Fq, and then consider the sub-
code of C made up of those codevectors whose coordinates all fall into Fq. This is
sometimes called a subfield subcode construction. Applied to Reed-Solomon codes,
this gives us the class of so-called alternant codes.

Definition 3.1. An alternant code over Fq is the set of codewords of a Reed-
Solomon code over Fqm , for some m > 1, whose coordinates all belong to Fq.

An alternant code is usually specified by a parity-check matrix of the underlying
Reed-Solomon code, so an r × n matrix H over Fqm of the form

γ
γα
· · ·

γαr−1


with α = [α1, . . . , αn] and γ = [γ1, . . . , γn], αi, γi ∈ Fqm \ {0}. The alternant code
is then

C = {c ∈ Fn
q , Hc⊺ = 0}.

Decomposing the entries of H over an Fq-basis of Fqm , we get that the r rows of H
become rm rows over Fq, in other words C becomes defined by rm linear equations
over Fq. We therefore have:

Proposition 3.2. The alternant code defined by the r × n matrix H over Fqm is
an Fq-linear code of dimension k ⩾ n− rm.

In all generality we only have an inequality for the dimension k because we have
no guarantee that the rm linear equations over Fq will be linearly independent.

Since the alternant code defined by H is contained in a Reed-Solomon code, its
minimum distance is at least that of the RS code. In other words:

Proposition 3.3. The alternant code defined by the r × n matrix H over Fqm is
an Fq-linear code of minimum distance d ⩾ r + 1.

Finally, alternant codes come with a natural decoding algorithm, they can be
decoded simply by solving the decoding problem for the ambient Reed-Solomon
code. If we are decoding y = c+e with |e| < (r+1)/2, then we know that c is the
unique solution to the decoding problem with input y and that the Reed-Solomon
decoder will find it.

3.2. Goppa codes, a first definition. Goppa codes are a particular subclass of
the family of alternant codes, though that is not immediately apparent from the
construction below.

NOTES ON CODE-BASED CRYPTOGRAPHY 11

Let q be fixed and set Q = qm. Let α1, . . . , αn be some fixed, distinct elements of
FQ and let G(X) ∈ FQ[X] be some polynomial of degree r such that G(αi) ̸= 0 for
i = 1, . . . , n. Now for any vector a = (a1, . . . , an) over Fq, we define the rational
function in the variable X,

(5) Ra(X) =
n∑

i=1

ai
X − αi

.

Note that the (X−αi) are invertible modulo G(X) since we have chosen G(X) such
that G(αi) ̸= 0. We may therefore consider the quantity Ra(X) in the quotient
ring FQ[X]/G(X). We define:

Definition 3.4. For α = [α1, . . . , αn] and G(X), the Goppa code Γ(α, G) consists
of all vectors a ∈ Fn

q such that
Ra(X) = 0

in the ring FQ[X]/G(X).

It should be obvious that Γ defined above is a linear code over Fq. We now compute
a convenient parity-check matrix (over FQ) for Γ.

3.3. An FQ-parity-check matrix for Goppa codes.

Theorem 3.5. Let α and G(X) define the Goppa code Γ = Γ(α, G). Let

H =


γ
γα
· · ·

γαr−1


with γ = [G(α1)

−1, G(α2)
−1, . . . , G(αn)

−1]. Then Γ = {a ∈ Fn
q , Ha⊺ = 0}. In

particular Γ is an alternant code.

Proof. First we express the inverse of (X − αi) modulo G(X) as a polynomial of
degree < r. For this we need only write:

(X − αi)
−1 = −G(X)−G(αi)

X − αi

G(αi)
−1,

since it is easily checked that multiplying the right-hand side by (X − αi) gives 1.
So by definition of Γ, a ∈ Γ iff

(6)
n∑

i=1

ai
G(X)−G(αi)

X − αi

G(αi)
−1 = 0

in FQ[X], since the left-handside of (6) is a polynomial of degree < r. Writing
G(X) = grX

r + gr−1X
r−1 + · · · + g1X + g0, where gi ∈ FQ and gr ̸= 0, we apply

NOTES ON CODE-BASED CRYPTOGRAPHY 12

the formula
Xj − αj

i

X − αi

= Xj−1 + αiX
j−2 + · · ·+ αj−1

i

with the purpose of making the left-hand side of (6) more explicit, to obtain:

G(X)−G(αi)

X − αi

= gr(X
r−1 + αiX

r−2 + · · ·+ αr−1
i) + · · ·+ g2(X + αi) + g1

Equating the coefficients of Xr−1, . . . , X, 1 to zero in (6), we get that a ∈ Γ iff
Ma⊺ = 0 with

M =


grG(α1)

−1 · · · grG(αn)
−1

(gr−1 + α1gr)G(α1)
−1 · · · (gr−1 + αngr)G(αn)

−1

· · · · · · · · ·
(g1 + α1g2 + · · ·+ αr−1

1 gr)G(α1)
−1 · · · (g1 + αng2 + · · ·+ αr−1

n gr)G(αn)
−1


Now M gets rewritten as:

M =


gr 0 0 · · · 0
gr−1 gr 0 · · · 0
gr−2 gr−1 gr · · · 0
· · · · · · · · · · · · · · ·
g1 g2 g3 · · · gr




1 1 · · · 1
α1 α2 · · · αn

α2
1 α2

2 · · · α2
n

· · · · · · · · · · · ·
αr−1
1 αr−1

2 · · · αr−1
n

D

with D being the diagonal matrix

D =


G(α1)

−1 0
G(α2)

−1

. . .
0 G(αn)

−1

 .

Since the leftmost matrix in the decomposition of M is square and invertible, we
have that Ma⊺ = 0 iff Ha⊺ = 0 where

H =


1 1 · · · 1
α1 α2 · · · αn

α2
1 α2

2 · · · α2
n

· · · · · · · · · · · ·
αr−1
1 αr−1

2 · · · αr−1
n

D

which is exactly the parity-check matrix claimed by the Theorem. □

So why the convoluted definition of Section 3.2 if they can be defined by the
characterisation of Theorem 3.5 ? Because the original definition allows us to
sometimes obtain information that would be difficult to obtain from the parity-
check matrix of Theorem 3.5. We now illustrate.

NOTES ON CODE-BASED CRYPTOGRAPHY 13

3.4. Binary Goppa codes. Let q = 2 and Q = 2m. Define a Goppa code
Γ = Γ(α, G) and suppose G(X) is chosen to be squarefree, meaning that for every
irreducible polynomial P (X) of FQ[X], we have P (X)2̸ |G(X). Let a = [a1, . . . , an]
be a (binary) codeword in Γ and let Ia = {i, ai = 1} be the support of a. Define
the polynomial:

fa(X) =
∏
i∈Ia

(X − αi)

We have:
f ′
a(X) =

∑
i∈Ia

∏
j∈Ia
j ̸=i

(X − αj)

and (5) gets rewritten as:

Ra(X) =
∑
i∈Ia

1

X − αi

=
f ′
a(X)

fa(X)

Since G(αi) ̸= 0 for every i, we have that fa(X) is invertible modulo G(X), so

Ra(X) = 0 mod G(X) iff G(X)|f ′
a(X).

Now the field FQ is of charateristic 2, so f ′
a(X) is a sum of monomials of even

degree, so it is a sum of squares (recall that every element of FQ is a square), hence
it is a square in FQ[X]. Therefore G(X)|f ′

a(X) iff G(X)2|f ′
a(X). Summarising:

Proposition 3.6. If the Goppa polynomial G(X) is squarefree, then, over the
binary field we have:

Γ = Γ(α, G(X)) = Γ(α, G(X)2).

So, setting r = degG(X), if we think of Γ as defined by G(X), then Proposition 3.6
tells us that the minimum distance of Γ is at least 2r + 1 as opposed to r + 1
guaranteed by Proposition 3.3. Alternatively, if we think of Γ as defined by G(X)2,
then Proposition 3.6 tells us that the dimension of Γ is at least n− rm as opposed
to n− 2rm guaranteed by Proposition 3.2.

To decode Γ we should use its structure given by Γ(α, G(X)2), since Reed-Solomon
decoding is then guaranteed to decode correctly up to r errors.

4. The original McEliece cryptosystem

4.1. The McEliece paradigm. McEliece proposed a very general method for
devising a public-key encryption scheme. Let M = Fk

2 be the space of plain mes-
sages that we want to encrypt, in other words we assume our plaintexts to be
k-bit strings. Choose an error-correcting code C of length n and dimension k and

NOTES ON CODE-BASED CRYPTOGRAPHY 14

publish an arbitrary generator matrix G for this code. The matrix G is the public
key and is used for encryption. To encrypt a message m ∈ Fk

2 , we compute

y = mG+ e

where e is a random binary vector of length n and some fixed weight t. Notice
that mG is a codevector for the code C, so the ciphertext y is a noisy version of
a codeword.

The secret key gives access to a hidden decoding algorithm that is able to efficiently
remove error vectors of weight t. So to decipher the ciphertext y, apply the
decoding algorithm to remove the error e and obtain mG. Writing G = [A |B] and
assuming, without loss of generality, A to be invertible, we have mG = [mA |mB]
and we may multiply on the right mA by A−1 to recover m.

The working assumption is that without knowledge of the hidden data that allows
one to decode noisy codewords of C, the adversary that tries to decrypt is faced
with a generic instance of the decoding problem, which is generally assumed to be
intractable (more on that later).

The assumption for a McEliece cryptosystem is therefore generally formulated as
indistinguishability from a random code. To make this slightly more formal, what
we require is a family F of codes C, of length n and dimension k say, that come
with a low-complexity decoding algorithm from errors of weight t. We assume:

Indistinguishability assumption. Consider the following two ways of construct-
ing a matrix G :

(1) Choose a random code C from the family F, and choose a random k × n
generator matrix G for C,

(2) Choose a uniformly random k × n matrix G.

There should not exist an algorithm with complexity less than some security pa-
rameter (e.g. that uses less than 280 arithmetic operations), that given as input
a matrix G that has been randomly constructed either according to method 1 or
method 2, outputs (1) or (2) with a success probability significantly better than
1/2 (a random guess).

We now remark that the indistinguishibility assumption implies that deciphering
random encrypted messages is not feasible without the secret or some extra knowl-
edge. Indeed, if there were an algorithm that decrypts, then, by definition of the
McEliece scheme, such an algorithm decodes from t errors random codewords of
a member C of F; the indistinguishibility assumption implies therefore that this
algorithm also decodes from t errors random codewords of a random code (because
if the algorithm behaves differently on a random code, then it is a distinguisher !)

If we are convinced that decoding random codes of length n and dimension k from t
errors is infeasible, then the indistinguishibility assumption implies security. We

NOTES ON CODE-BASED CRYPTOGRAPHY 15

could envisage having security without indistinguishibility, but cryptographers like
to err on the side of caution.

4.2. The original McEliece cryptosystem. How can we implement the above
idea pratically ? McEliece’s proposal was to use binary Goppa codes Γ(α, G(X)).
So the parameters of the Goppa code are chosen, namely m, the degree of the
extension field FQ of F2, the length n, and the degree r of the Goppa polynomial.
Then a random vector α = [α1, . . . , αn], with distinct αi ∈ FQ, is chosen. Fi-
nally one chooses a random squarefree polynomial G(X) ∈ FQ[X] of degree r that
does not evaluate to 0 on any of the αi. the public-key is an arbitrary (random)
generator matrix G for the code C. Everything else about the code is kept secret.

We recall that the matrix H in Theorem 3.5 defines a Reed-Solomon code and
that its dual is a Reed-Solomon code RSk(α,β) with k = n − r. We can think
of RSk(α,β) is the parent Reed-Solomon code of the Goppa code Γ(α, G(X), i.e.
Γ(α, G(X)) is the set of binary vectors that belong to RSk(α,β). The secret
key consists of therefore of α,β which enables us to decode both the parent Reed-
Solomon code and the Goppa code Γ(α, G(X)) by applying the decoding algorithm
of Section 2.5. Summarising:

The original McEliece cryptosystem Choose parameters m,n, r. Choose
α = [α1, αn], where the αi are distinct elements of FQ, Q = 2m. Choose a
random squarefree polynomial G(X) ∈ FQ[X] of degree r. Define the binary
Goppa code C = Γ(α, G(X)).

Public key: a random generator matrix G of C

Secret key: α and β that define the Reed-Solomon code RSn−r(α,β) parent
to C.

Encryption: for a message m ∈ Fk
2 , construct the ciphertext as

y = mG+ e

where e ∈ Fn
2 is a random binary vector of weight r.

Decryption: Use α and β to apply the decoding algorithm of Section 2.5 and
recover c = mG from y. Recover m from mG by linear algebra (solve a linear
system).

Remark 4.1. One doesn’t really need the knowledge of β to decode, the vector α
is sufficient. Indeed, in the decoding algorithm of Section 2.5 one can define the
code Π as the star-product of L with the code over FQ generated by the matrix G,
which will be a subcode of (and probably simply equal to) the product of L with
the parent Reed-Solomon code RSn−r(α, β).

NOTES ON CODE-BASED CRYPTOGRAPHY 16

McEliece originally proposed to use the parameters m = 10, n = 1024 and r = 50.
So the Goppa code C has parameters [1024, k ⩾ 524, d ⩾ 101] and the decoding
algorithm allows the decoding of any pattern of 50 errors. In practice the dimension
k of the code actually equals 524.

	1. Background on codes
	1.1. Error-correcting codes, Hamming distance
	1.2. Duality and the syndrome function

	2. Reed-Solomon codes
	2.1. Narrow-sense Reed-Solomon codes
	2.2. Generalised Reed-Solomon codes
	2.3. Star products
	2.4. The dual of a Reed-Solomon code
	2.5. Decoding Reed-Solomon codes

	3. Goppa codes
	3.1. Alternant codes
	3.2. Goppa codes, a first definition
	3.3. An FQ-parity-check matrix for Goppa codes
	3.4. Binary Goppa codes

	4. The original McEliece cryptosystem
	4.1. The McEliece paradigm
	4.2. The original McEliece cryptosystem

