logo IMB
Retour

Séminaire de Théorie des Nombres

Une généralisation de la conjecture d'Artin parmi les presque premiers

Paul Péringuey

( Nancy )

Salle de Conférences

le 03 février 2023 à 14:00

La conjecture d'Artin stipule que l'ensemble des nombres premiers pour lesquels un entier a différent de -1 ou un carré parfait est racine primitive admet une densité asymptotique parmi tous les premiers. En 1967 C.Hooley démontra cette conjecture sous l'hypothèse de Riemann généralisée. La notion de racine primitive peut être étendue modulo un entier quelconque en considérant alors les éléments du groupe multiplicatif engendrant des sous-groupes de tailles maximales. Je parlerai de l'ensemble des presque premiers pour lesquels un nombre a est racine primitive généralisée, et montrerai que l'on obtient, sous GRH, des résultats similaires à la conjecture d'Artin pour les racines primitives.