Salle 2
le 27 octobre 2022 à 11:00
Une matrice de transition U sur est dite presque triangulaire supérieure si U(i,j)e0Òjei-1, de sorte que les incréments des chaînes de Markov correspondantes sont au moins -1 ; une matrice de transition L sur est dite presque triangulaire inférieure si L(i,j)e0Òjdi+1, et alors, les incréments des chaînes de Markov correspondantes sont au plus +1. Dans cet exposé, je caractériserai la récurrence, la récurrence positive et la distribution invariante pour la classe des matrices de transition presque triangulaires. Ces résultats englobent le cas des processus de naissance et de mort (BDP), qui sont des chaînes de Markov célèbres étant simultanément presque triangulaires supérieures et presque triangulaires inférieures. Leurs propriétés ont été étudiées dans les années 50 par Karlin & McGregor dont l'approche repose sur des connexions profondes entre la théorie des BDP, les propriétés spectrales de leurs matrices de transition, le problème des moments, et la théorie des polynômes orthogonaux. Notre approche est principalement combinatoire et utilise des méthodes algébriques élémentaires. Travail en commun avec J.F. Marckert.