Daniele Turchetti (Warwick, ETH Zürich)
Salle 1
le 18 novembre 2022 à 14:00
La théorie des modèles sur un anneau à valuation discrète se situe au croisement de la théorie de nombres et de la géométrie algébrique, et est riche en applications Diophantiennes, aux représentations Galoisiennes et à la cryptographie, entre autres. Dans les années 60, Deligne et Mumford ont démontré quune courbe C sur un corps à valuation discrète K admet un modèle semi-stable quitte à faire une extension des scalaires finie. Létude de lextension minimale L|K qui rend C semi-stable amène naturellement à beaucoup de questions encore ouvertes. Dans cet exposé, je vais présenter des résultats sur le comportement des modèles par changement de base. Les premiers (avec Lorenzo Fantini) explorent le lien entre modèles réguliers, la géométrie de lanalytification (à la Berkovich) de C et lextension L|K. Ensuite, je parlerai dun résultat plus précis (avec Andrew Obus) consacré à létude de L|K dans le cas de réduction potentiellement multiplicative. Cela nous permet dobtenir des résultats dans un cadre de ramification sauvage.