Combien une forme quasi-modulaire peut-elle s'annuler à l'infini sans être..nulle?
La
-algèbre
(
étant les séries d'Eisenstein de poids
normalisées) est graduée et les éléments homogènes pour cette graduation s'appellent formes quasi-modulaires. Toute forme quasi-modulaire a un poids (c'est le degré par rapport à la graduation) et une
-expansion, qui est une série entière qui la d'ecrit au voisinage de
. Si une forme quasi-modulaire s'annule beaucoup en
et son poids est "petit" alors elle est nulle. Ce simple principe peut être quantifié de manière satisfaisante. Mais il y a un problème analogue, en caractéristique non nulle, concernant les formes quasi-modulaires de Drinfeld, qui est beaucoup plus difficile à traiter, ce qui est à première vue surprenant. Cet exposé se veut comme une introduction à ce problème et aux résultats partiels dont nous disposons.