Une généralisation géométrique des codes de Goppa classiques utilisant l'opérateur de Cartier
Salle de Conférences
le 07 janvier 2011 à 14:00
Nous rappellerons tout d'abord quelques rudiments de la théorie des codes correcteurs et des codes géométriques. Nous nous focaliserons ensuite sur le problème classique (et souvent difficile) consistant à rechercher de bonnes familles de codes à coefficients dans
. Une approche classique consiste à choisir de bons codes d'efinis sur une extension
de
et de les "descendre" sur
via une opération arithmétique classique (restriction, trace, etc...) Si le code d'efini sur
est un code géométrique construit sur une courbe de genre
et judicieusement choisi, l'opération de restriction à
donne des codes bien meilleurs que dans le cas "générique", ce sont les codes de Goppa binaires. Dans cet exposé, nous présenterons une généralisation de cette approche aux courbes de genre quelconque basée sur l'utilisation de l'opérateur de Cartier.