logo IMB
Retour

Séminaire de Théorie des Nombres

Couplages optimaux sur variétés abéliennes via les fonctions thêta..

Damien Robert

( INRIA Bordeaux )

Salle de Conférences

le 30 septembre 2011 à 14:00

L'utilisation de couplages en cryptographie a connu un grand essor ces dernières années, car elle permet la réalisation de protocoles comme la cryptographie basée sur l'identité, de manière efficace. Pour l'instant, les seuls couplages cryptographiquement sûrs connus viennent des variétés abéliennes. L'algorithme de Miller permet de calculer efficacement le couplage de Weil et de Tate sur les Jacobiennes de courbes hyperelliptiques. Une collaboration avec David Lubicz nous a permis de développer un algorithme pour calculer le couplage sur une variété abélienne par le biais des fonctions thêta. Pour des raisons d'efficacité, des modifications du couplage de Tate ont été développées dans le cadre des courbes elliptiques (couplage de ate optimal). Dans cet exposé, nous décrirons notre algorithme, et comment l'adapter aux couplages optimaux. Il s'agit d'une collaboration avec David Lubicz.

In english : The use of pairings in cryptology has allowed to implement powerful protocols like Identity Based Encryption in an efficient way. To date, the only cryptographically secure known pairings come from Abelian Varieties. Miller's algorithm allows to compute pairings efficiently on Jacobians of hyperelliptic curves. In a paper with David Lubicz, we described an algorithm using theta functions to compute the Weil and Tate pairing on any abelian variety.

Since theta coordinates are faster than Mumford coordinates for hyperelliptic of genus 2 curves, this algorithm is particularly interesting in this case. However for cryptographic applications of pairings, one can use faster pairings derived from the Tate pairing (optimal ate). In this talk, we will describe our pairing algorithm, and how we can adapt it to the case of the ate and optimal ate pairing.