logo IMB
Retour

Séminaire de Théorie des Nombres

Les conjectures principales supersingulières, la conjecture de Sylvester et la conjecture de Goldfeld

Daniel Kriz

( Sorbonne Université )

Salle de Conférences

le 24 février 2023 à 14:00

Je présenterai un théorème « p-converse » à rang 0 et 1 pour les courbes elliptiques sur les rationnels à multiplication complexe (CM) dans le cas où le nombre premier p est ramifié dans le corps CM. Ce théorème a des applications à deux problèmes classiques d'arithmétique: il vérifie la conjecture de Sylvester de 1879 sur les nombres premiers exprimables comme une somme de deux cubes rationnels et établit la conjecture de Goldfeld pour la famille des nombres congruents. La démonstration répose sur la formulation et la preuve d'une nouvelle conjecture principale d'Iwasawa, qui à leur tour utilisent de nouvelles méthodes issues des interactions entre les objets théoriques d'Iwasawa et la théorie de Hodge p-adique relative sur les courbes de Shimura à niveau infini.