logo IMB
Retour

Séminaire de Géométrie

Réduits polynomialement bornés de la structure des sous-analytiques globaux avec l'exponentielle

Serge Randriambololona

( U. de Savoie )

Salle 2

le 01 février 2013 à 10:45

La catégorie des ensembles et applications semi-algébriques possède de bonnes propriétés topologiques: c'est un exemple de structure o-minimale. De nombreuses autres structures o-minimales ont été exhibées, dont celle des ensembles sous-analytiques globaux avec l'exponentielle, qui fait l'objet de cet exposé. Dans les années 90, L. van den Dries et C. Miller conjecturent la maximalité de la structure des sous-analytiques globaux avec les puissances réelles parmi les réduits polynomialement bornés de la structure des sous-analytiques globaux avec l'exponentielle. Après avoir défini et motivé les termes "structure o-minimale", "polynomialement borné", "structure des sous-analytiques globaux avec l'exponentielle" et "structure des sous-analytiques globaux avec les puissances réelles", je présenterai quelques résultats liés à cette conjecture