Pedro Daniel Gonzalez Perez
( U. Complutense de Madrid ) G. Mikhalkin a défini les courbes de Harnack dans les surfaces toriques projectives. Elles sont définies par un polynôme de support contenu dans un polygone convexe à sommets entiers et plongées dans la surface torique correspondante. Il a montré leur existence (via la méthode du patchwork de Viro) ainsi que l'unicité de leur type topologique plongé. Le but est de montrer un résultat analogue pour la lissification (smoothing) d'un germe de branche réelle plane (C,O) analytique réelle. On définit pour cela une classe de smoothings dite Multi-Harnack à l'aide de la résolution des singularités constituée d'une suite de g éclatements toriques, si g est le nombre de paires de Puiseux de la branche (C,O). Un smoothing multi-Harnack est réalisé de la manière suivante : à chaque étape de la résolution (en commençant par la dernière) et de manière successive, un smoothing de Harnack (au sens de Mikhalkin) intermédiaire est obtenu par la méthode de Viro. On montre alors l'unicité du type topologique de tels smoothings.