logo IMB
Retour

Séminaire de Géométrie

Comportement asymptotique des hypersurfaces de Cauchy dans un espace-temps à courbure constante.

Mehdi Belraouti

( IMB )

Salle 2

le 18 octobre 2013 à 10:45

Dans cet exposé nous nous intéressons aux espaces temps dit globalement hyperboliques Cauchy compacts. Ce sont des espaces temps qui admettent une fonction, dite fonction temps, propre surjective qui croit strictement le long des courbes causales inextensibles. Les niveaux de telles fonctions sont des hypersurfaces de type espaces appelés hypersurfaces de Cauchy. La donnée d'une fonction temps définit naturellement une famille à 1-paramètres d'espaces métriques. Notre but est d'étudier le comportement asymptotiques de ces familles d'espaces métriques. Il y a deux cas de figure à considérer: le premier étant le comportement asymptotique dans le passé; le deuxième est celui du comportement asymptotique dans le future. Plus de conditions géométriques sur l'espace temps (courbure constante) et les fonctions temps à considérer (convexité) seront nécessaires.