logo IMB
Retour

Séminaire de Géométrie

Groupes de surfaces non archimédiens, immeubles et A_2-complexes

Anne PARREAU

( Grenoble )

Salle 2

le 21 mars 2014 à 11:00

Etant donnée une surface à bord S munie d'une triangulation idéale, les coordonnées de décalage de Thurston-Penner-Fock-Goncharov permettent de construire des représentations du groupe fondamental de S dans PGL(3) par assemblage de triangles dans le plan projectif. Dans cet exposé on s'intéressera au cas non-archimédien (qui permet par exemple de comprendre les dégénérescences de structures projectives convexes sur les surfaces) et à l'action de ces représentations sur l'immeuble affine X de PGL(3). On montrera que, sous des conditions simples sur les coordonnées de décalage, l'action préserve un sous-complexe dans X, géodésique dans un sens approprié, qui est par morceaux un arbre ou une surface. En particulier on associe à ces représentations une famille de A_2-complexes finis, analogues au surfaces de translation et semi-translation mais avec holonomie dans Z/3Z, permettant notamment de calculer le spectre de longueurs / valeurs propres.