logo IMB
Retour

Séminaire de EDP - Physique Mathématique

Titre : Propagation d'états cohérents

Lysianne Hari

Salle 2

le 10 février 2015 à 11:00

Résumé : Dans cet exposé, nous étudierons la propagation d?états cohérents pour un système de deux équations de Schrödinger couplées, dans la limite semi-classique. Les couplages seront induits par une non-linéarité cubique ainsi que par un potentiel matriciel dont les valeurs propres présentent un « croisement évité » : en un point donné, le « gap » entre elles se réduit alors que le paramètre semi-classique devient petit. Après une rapide présentation de certains résultats antérieurs, nous montrerons que lorsqu'un état cohérent qui « vit » dans un espace propre du potentiel se propage à travers le croisement évité, il y a des transitions entre les modes, à l?ordre dominant. Dans le régime considéré, nous observerons les effets non-linéaires loin de la zone de croisement, mais verrons que la probabilité de transition peut être calculée grâce à la formule de Landau-Zener linéaire.