Salle de Conférences
le 20 février 2015 à 14:00
J'exposerai un travail en cours, concernant la recherche de bornes inférieures uniformes sur la hauteur canonique des points algébriques d'ordre infini, dans le cas des courbes elliptiques à multiplications complexes, avec la conjecture de Lehmer en ligne de mire. J'espère expliciter et raffiner un résultat connu, dû à Laurent, en évitant le recours à la hauteur naïve via la théorie de l'intersection d'Arakelov: un résultat de Faltings et Hriljac permet en effet de relier la hauteur canonique sur une courbe elliptique à un certain calcul d'intersection sur son modèle minimal régulier. Ce calcul nécessite des estimations explicites de sommes indexées par des nombres premiers bien choisis, qu'on peut obtenir grâce à une version explicite du théorème de Chebotarev. Je montrerai dans les grandes lignes comment obtenir une telle version.