On considère une équation algébrique à coefficients complexes indéterminés. Pour le lieu discriminant réduit d'une telle équation, on paramétrise les strates singulières correspondant à la spécification des coefficients pour laquelle l'équation admet au moins une racine de multiplicité
. Ces paramétrisations sont les restrictions de la paramétrisation de Horn-Krapanov du lieu discriminant tout entier à une chaîne de sous-espaces emboîtés de l'espace projectif. On prouve que chaque telle strate se présente comme le lieu des zéros d'un
-discriminant une fois opérées des transformations monomiales.