Salle 2
le 18 septembre 2015 à 10:45
Autrement dit, il s'agit de plonger isométriquement une sphère unité dans une boule de rayon arbitrairement petite. Ceci est impossible en classe C^2 car la courbure de Gauss fournit une obstruction. En revanche, un tel plongement existe en classe C^1. Ce résultat contre-intuitif date des années 50, il est dû à Nash et Kuiper. Nous expliquerons comment, avec la technique de l'intégration convexe de Gromov, on peut construire un tel plongement. Nous en présenterons des images.