logo IMB
Retour

Séminaire de Théorie des Nombres

Indice des équations différentielles p-adiques sur les courbes de Berkovich

Andrea Pulita

( Institut Fourier )

Salle 1

le 04 décembre 2015 à 14:00

Nous allons parler des derniers résultats que nous avons obtenu en collaboration avec J.Poineau. Il s'agit en particulier de l'extension aux courbes quasi-lisses de Berkovich des théorèmes de finitude dimensionnelle de la cohomologie de de Rham d'une équation différentielle p-adique conjecturés par Dwork-Robba, et démontrés finalement par Christol-Mebkhout dans le cadre de la cohomologie rigide. Nous généralisons aussi ce théorème en prenant en compte toutes les équations différentielles de manière inconditionnelle, en particulier sans les conditions de solubilité, surconvergence, ou d'existence d'une structure de Frobenius. Des ingrédients fondamentaux sont le les travaux récents de Kedlaya et F.Baldassarri. La contribution de Kedlaya consiste en un raffinement cruciale de certains notions classiques, ainsi que l'introduction de la super-harmonicité, alors que la contribution de Baldassarri consiste en l'introduction d'une nouveau point de vue qui a ouvert tout un horizon d'investigation.