Salle 2
le 08 décembre 2015 à 09:30
Un problème inverse lié à la tomographie par impédance électrique est de savoir si l'on peut déterminer un potentiel dans une équation de Schrödinger sur un ouvert borné lisse à partir de la connaissance de l'application Dirichlet-à-Neumann associée mesurée sur une partie seulement du bord. En dimension supérieure ou égale à trois, le résultat le plus précis à ce jour est dû à Carlos Kenig, Johannes Sjöstrand et Gunther Uhlmann et permet d'affirmer qu'un potentiel est déterminé de manière unique par l'application Dirichlet-à-Neumann mesurée sur une partie, éventuellement très petite, du bord d'un ouvert strictement convexe. Se pose la question d'obtenir des versions quantitatives de ce résultat d'unicité et d'établir des estimations de stabilité les plus précises possibles. J'essayerai de montrer comment cette question est liée à l'obtention d'estimations de stabilité sur des transformées intégrales géométriques. Ce travail est une collaboration avec Pedro Caro (ICMAT) et Alberto Ruiz (Universidad Autónoma de Madrid)