Salle 2
le 29 janvier 2016 à 10:45
D'après un résultat de Thurston, l'espace de modules des métriques plates sur la sphère avec n singularités coniques d'angles donnés admet une structure de variété hyperbolique complexe (non complète) de dimension n-3. Le complété métrique de cet espace est une variété conique hyperbolique complexe. On s'intéresse dans cet exposé à des objets réels dans ces espaces de modules complexes. On décrit une structure hyperbolique réelle sur l'espace de modules des métriques symétriques à 6 et 8 singularités d'angles égaux. Les composantes connexes de ces espaces sont des orbifolds hyperboliques réels. Ces composantes admettent un recollement naturel, dont on étudie la structure.