logo IMB
Retour

Séminaire Images Optimisation et Probabilités

Limiting spectral distribution for non-hermitian random matrices with a variance profile

Jamal Najim

( université de Marne La Vallée )

Salle 1

le 28 avril 2016 à 11:00

Consider a large n×nn \times n random matrix YnY_n with entries given by Yij=σijnXijY_{ij} = \frac{\sigma_{ij}}{\sqrt{n}} X_{ij} where the XijX_{ij}'s are independent and identically distributed random variables with four moments, and the σij\sigma_{ij}'s are deterministic, non-negative quantities and account for a variance profile. Notice that some of the σij\sigma_{ij}'s may be equal to zero. In this talk, we will describe the limiting spectral distribution of matrix XnX_n as nn \rightarrow \infty, that is the limit of the empirical distribution of XnX_n's eigenvalues. We will carefully specify the assumptions on the variance profile (σij)(\sigma_{ij} ) under which we can describe the limiting spectral distribution. This is a joint work with Nicholas Cook, Walid Hachem and David Renfrew.