logo IMB
Retour

Séminaire de Géométrie

Faux plans réels : modèles affines exotiques de R^2

Frédéric MANGOLTE

( U. Angers )

Salle 2

le 17 juin 2016 à 09:30

On étudie les complexifications topologiquement minimales du plan affine euclidien R^2 à isomorphisme près et à difféomorphismes birationnels près. Un faux plans réel est une surface algébrique géométriquement intègre non singulière S définie sur le corps R des réels telle que :\ • Le lieu réel S(R) est difféomorphe à R^2 ;\ • La surface complexe S_C(C) a le type d'homologie rationnelle de A^2_C ;\ • S n'est pas isomorphe à A^2_R en tant que surface définie sur R.\ L'étude analogue dans le cas compact, c'est-à-dire la classification des complexifications du plan projectif réel P^2(R) possédant l'homologie rationnelle du plan projectif complexe est bien connue : P^2_C est l'unique telle complexification. Nous prouvons que les faux plans réels existent en donnant plusieurs exemples et nous abordons la question : existe-t-il un faux plan réel S tel que S(R) ne sois pas birationnellement difféomorphe à A^2_R(R) ? (Travail en commun avec Adrien Dubouloz.)