logo IMB
Retour

Séminaire de Théorie des Nombres

Factorisation de fonctions L p-adiques et formule de Gross-Zagier

Daniele Casazza

( IMB )

Salle de Conférences

le 30 septembre 2016 à 14:00

Les conjectures de Stark, ainsi que la conjecture de Birch et Swinnerton-Dyer, se traduisent de façon plus générale dans le contexte des motifs. Par analogie avec la théorie d'Iwasawa, il est intéressant de disposer de variantes p-adiques de ces conjectures. La conjecture (p-adique) de Stark elliptique, formulée par Darmon, Lauder et Rotger, propose un lien entre certaines fonctions L p-adiques associées à une courbe elliptique E/Q et des points sur la courbe, ainsì que des unités de Stark. C'est une variante p-adique de la conjecture de Birch et Swinnerton-Dyer, qui nécessite certaines hypothèses. Dans le cas où les points de Heegner et les unités elliptiques sont disponibles, on démontre cette conjecture pour une courbe E à réduction semi-stable (bonne ou multiplicative). Ce résultat est la conséquence d'une factorisation de fonctions L p-adiques et d'une formule p-adique de Gross-Zagier déjà existante.