logo IMB
Retour

Séminaire de Théorie des Nombres

La conjecture de Mordell explicite pour certaines familles de courbes

Sara Checcoli

( Grenoble )

Salle de Conférences

le 21 octobre 2016 à 14:00

La conjecture de Mordell, démontrée par G. Faltings, dit qu'une courbe de genre au moins 2 sur un corps de nombres k a seulement un nombre fini de points k-rationnels. Malheureusement, la preuve de cette conjecture n'est pas effective, c'est-à-dire elle ne donne pas des bornes sur la 'taille' de points rationnels, ni une méthode pour trouver une telle borne. Dans cet exposé je parlerai d'un travail en collaboration avec F. Veneziano et E. Viada dans lequel on démontre, en particulier, une borne explicite pour la hauteur de Néron-Tate des points rationnels d'une courbe de genre au moins 2 plongée dans E^N où E est une courbe elliptique sans CM et ayant groupe de Mordell-Weil de rang 1. Ce résultat peut être utilisé pour trouver tous les points rationnels sur beaucoup de courbes explicites. Je présenterai aussi certaines de ces applications.