Spectre non trivial et dynamiques hyperboliques.
Salle 2
le 15 novembre 2016 à 14:00
L'évolution temporelle de systèmes dynamiques classiques hyperboliques peut se caractériser par le "spectre des corrélations" dont la définition remonte à D. Ruelle, dans les années 70. Peu de résultats quantitatifs (loi de weyl, prescription etc...) sont connus sur ce spectre non-autoadjoint. On fera un panorama de résultats très récents qui apportent des réponses à cette problématique, dans des cas uniformément hyperboliques (Applications dilatantes du cercle, difféos d'Anosov) et non uniformément hyperboliques (flots d'Anosov, extensions compactes de difféos d'Anosov). Les techniques utilisées sont variées et font appel à la théorie du potentiel, l'analyse microlocale et les probabilités.