Surfaces maximales dans l'espace Anti-de Sitter et applications quasi-conformes du plan hyperbolique
Salle 2
le 20 janvier 2017 à 10:45
Après le travail de Mess dans 1990, l'étude de l'espace Anti-de Sitter de dimension (2+1) a été largement développé, particulièrement pour ses relations avec la théorie de Teichmüller des surfaces hyperboliques, et les applications quasi-conformes. Plus précisément, des surfaces maximales (c'est-à-dire, de courbure moyenne nulle) sont reliées aux extensions minimales Lagrangiennes des homéomorphismes quasi-symétriques du cercle. Dans ce séminaire, nous allons discuter les propriétés géométriques des surfaces maximales dans l'espace Anti-de Sitter. Une application sera la preuve que, si K est la dilatation maximale de l'extension minimale Lagrangienne de f, alors log(K) < C|f|, où C est une constante universelle et |f| est la norme du birapport de f.