Salle 1
le 27 janvier 2017 à 14:00
L'étude des propriétés diophantiennes des valeurs de la fonction zêta de Riemann aux entiers passe souvent par la considération d'intégrales qui s'évaluent en des formes linéaires en les valeurs zêta. C'est notamment le cas dans la preuve de Beukers du théorème d'Apéry sur zeta(3), et dans la preuve par Ball et Rivoal de l'irrationalité d'une infinité de valeurs zêta impaires. Dans cet exposé nous suivrons un programme mis en place par Brown dont le but est d'expliquer (et potentiellement de produire) ces formes linéaires par des techniques de géométrie algébrique. Nous nous concentrerons sur une famille de motifs de Tate mixtes sous-jacente à la famille d'intégrales de Ball-Rivoal. Le calcul explicite des matrices de périodes donne lieu à des formules intégrales pour les coefficients des formes linéaires.