Considérons un groupe semisimple réel G et une représentation rho de G sur un espace vectoriel V. On se pose la question suivante : le groupe affine G
V (produit semidirect de G par V) contient-il un sous-groupe libre non abélien Zariski-dense qui agit proprement sur V ? Nous allons présenter un critère algébrique simple portant sur la représentation
qui donne une condition suffisante (et conjecturalement nécessaire) pour que la réponse soit positive. Nous allons ensuite chercher à classifier explicitement les représentations vérifiant ce critère.