logo IMB
Retour

Séminaire de EDP - Physique Mathématique

Stabilisation non-lineaire

Benjamin Texier

( Université Paris-Diderot )

Salle 2

le 07 novembre 2017 à 14:00

Pour des equations differentielles ordinaires autonomes en dimension finie, le theoreme de stabilite de Lyapunov affirme que la stabilite lineaire implique la stabilite non-lineaire, et que l'instabilite lineaire implique l'instabilite non-lineaire. Le theoreme de stabilite se generalise en dimension finie aux flots differentiables au sens de Frechet, sans hypothese supplementaire. Pour l'extension du theoreme d'instabilite a la dimension infinie, des conditions suffisantes (conditions spectrales ou conditions de regularite) sont connues. Quelles conditions sont necessaires ? Autrement dit: existe-t-il des exemples de flot qui soient lineairement instables mais non-lineairement stables ? Il s'agit d'un travail en collaboration avec Thierry Gallay et Kevin Zumbrun.