Estimation asymptotique de valeurs spéciales de fonctions L de courbes elliptiques dans une famille d'Artin-Schreier..
Salle de Conférences
le 12 janvier 2018 à 14:00
Les fonctions L des courbes elliptiques sur les corps globaux encodent (conjecturalement) beaucoup d'informations arithmétiques sur celles-ci. En général cependant, pour une courbe elliptique E sur
(t) de grand conducteur, on ne dispose que de peu d'informations analytiques sur L(E, s). Plus spécifiquement, nous considérons leur valeur spéciale L*(E, 1) (i.e. le premier coefficient non nul dans le développement de Taylor de L(E, s) en s=1) et nous nous intéressons au problème de comparer la taille de L*(E, 1) à celle du conducteur de E. Des heuristiques suggèrent que L*(E, 1) devrait génériquement être «aussi grosse que possible», mais ce comportement n'a été démontré que pour un nombre limité de familles de courbes elliptiques, et la question reste très largement ouverte. Dans cet exposé, après avoir introduit cette question et les motivations sous-jacentes plus en détail, je parlerai d'un travail récent à propos d'une famille «d'Artin-Schreier» de courbes elliptiques E définies sur
(t). Plus précisément, j'expliquerai comment calculer leur fonction L explicitement, et comment on peut en déduire une borne asymptotique très précise sur L*(E, 1) en termes de leur conducteur. À l'aide de la conjecture de Birch et Swinnerton-Dyer (qui est un théorème dans ce cas), on pourra alors traduire cette borne en une estimation asymptotique de certains invariants arithmétiques des courbes E considérées.