logo IMB
Retour

Séminaire de Théorie Algorithmique des Nombres

On the Density of Sets Avoiding Parallelohedron Distance 1

Philippe Moustrou

( IMB )

Salle 2

le 22 janvier 2018 à 10:00

Let \Vert \cdot \Vert be a norm on Rn\mathbb{R}^n. We consider the so-called unit distance graph GG associated with \Vert \cdot \Vert: the vertices of GG are the points of Rn\mathbb{R}^n, and the edges connect the pairs {x,y}\{x,y\} satisfying xy=1\Vert x-y\Vert=1. We define m1(Rn,)m_1\left(\mathbb{R}^n,\Vert \cdot \Vert\right) as the supremum of the densities achieved by independent sets of GG. The number m1m_1 was introduced by Larman and Rogers (1972) as a tool to study the measurable chromatic number χm(Rn)\chi_m(\mathbb{R}^n) of Rn\mathbb{R}^n for the Euclidean norm.