logo IMB
Retour

Séminaire de Théorie des Nombres

Théorie de Harder-Narasimhan pour les codes linéaires..

Hugues Randriam

( ENST )

Salle de Conférences

le 02 février 2018 à 14:00

Les codes linéaires sont des objets combinatoires qu'on peut voir comme un analogue discret des réseaux euclidiens. Il y a aussi des liens intéressants entre codes et courbes algébriques. Il est possible d'étendre ce faisceau de relations dans au moins deux directions : théorie de Riemann-Roch, et théorie de Harder-Narasimhan. On se propose de détailler cette dernière. Cela peut se faire selon au moins trois approches très naturelles, qui se trouvent toutes mener précisément à la même notion de pentes et de semistabilité. Enfin on étudie le comportement des pentes sous certaines opérations sur les codes. Un résultat remarquable est que le produit tensoriel de deux codes semistables est semistable. (Pour comparaison, l'énoncé analogue est vrai pour les fibrés vectoriels sur les courbes en caractéristique 0 mais faux en caractéristique p, et reste ouvert pour les réseaux euclidiens.)