Retour Séminaire de Géométrie
Sur l'équivalence arc-analytique
Jean-Baptiste CAMPESATO
( Aix-Marseille U. ) Salle 2
le 23 mars 2018 à 10:45
Pour commencer, je définirai l'équivalence arc-analytique et en donnerai quelques propriétés. Il s'agit d'une relation d'équivalence permettant d'obtenir une classification sans module continu les germes de fonctions Nash (i.e. analytiques réelles de graphes semialgébriques) singuliers.
Ensuite, je présenterai un invariant de cette notion dont la construction est similaire à celle des fonctions zêta motiviques de J. Denef et F. Loeser. Celui-ci généralise des constructions antérieures de S. Koike et de A. Parusiński puis de G. Fichou et admet de bonnes propriétés algébriques qui permettent d'obtenir de nouveaux résultats de classification.
En particulier, j'expliquerai comment déduire de cet invariant une classification exhaustive des polynômes de Brieskorn-Pham. Il s'agit d'une très bonne famille test pour comparer l'équivalence arc-analytique à d'autres relations.