Retour Séminaire de Géométrie
Rigidité pour les actions distales, fortement ergodiques par la théorie des modèles
Salle 2
le 06 avril 2018 à 10:45
Les actions distales du groupe des entiers ont été étudiées par Furstenberg pour sa preuve du théorème de Szemerédi. Plus tard Zimmer a étendu la théorie aux actions préservant une mesure de probabilité d'un groupe localement compact quelconque. Dans ce travail nous montrons de nouveaux résultats de rigidité pour les actions distales, fortement ergodiques, généralisant des résultats antérieurs d'Ioana et Tucker-Drob. Une des nouveautés de notre approche est l'utilisation de la logique continue -- un cadre modèle-théorique adapté à l'étude de structures métriques. Ceci est un travail en commun avec Tomás Ibarlucía.