Retour Séminaire Images Optimisation et Probabilités
Statistique des valeurs extrêmes pour données censurées
Julien Worms
( Université de Versailles ) Salle de Conférences
le 07 juin 2018 à 11:00
Cet exposé abordera le problème de l'estimation statistique de la queue d'une distribution univariée, dont seul un échantillon aléatoirement censuré (à droite) est disponible. Après des rappels sur la statistique des valeurs extrêmes et sur les données censurées, des estimateurs de l'indice des valeurs extrêmes seront présentés dans le cadre de lois à queues lourdes. Ces estimateurs ont la forme de sommes pondérées impliquant l'estimateur de Kaplan-Meier évalué dans toute la queue de l'échantillon, l'un d'entre eux s'écrivant comme une intégrale de Kaplan-Meier avec fonctionnelle non-bornée à support glissant. On évoquera leurs performances par rapport à leurs concurrents, en particulier dans des cadres de censure forte (le seuil de 50% de censure dans la queue jouant ici un rôle clé), et on montrera comment et dans quel cadre la normalité asymptotique peut être obtenue. Si le temps le permet, les extensions à d'autres cadres (queues plus légères, censure en présence de risques concurrents, quantiles extrêmes) seront abordées. Travail en collaboration avec Rym Worms (Univ. Paris-Est-Créteil) et aussi Jan Beirlant (KU Leuven).