Retour Séminaire de Géométrie
Une propriété de trou spectral pour les actions fortement ergodiques des groupes discrets sur les espaces mesurés
Salle 2
le 29 juin 2018 à 10:45
Il est bien connu depuis Schmidt que pour toute action ergodique préservant une mesure de probabilité d'un groupe discret sur un espace mesuré, si la représentation de Koopman associée n'a pas de vecteur presqu'invariant, alors l'action n'a pas de sous-ensemble presqu'invariant non trivial, c'est-à-dire, l'action est fortement ergodique. La réciproque n'est pas vraie comme l'a démontré Schmidt en 1980. Dans cet exposé, je présenterai une caractérisation de l'ergodicité forte des actions des groupes discrets sur les espaces mesurés en terme d'une propriété de trou spectral du groupe plein associé à la relation d'équivalence orbitale. J'expliquerai comment utiliser cette propriété de trou spectral pour caractériser l'ergodicité forte de l'extension de Maharam des actions non-singulières.