Retour Séminaire de Théorie des Nombres
L'invariant j d'une courbe elliptique à multiplication complexe n'est pas une unité
Salle 1
le 29 juin 2018 à 14:00
Un module singulier est l'invariant j d'une courbe elliptique à multiplication complexe. On sait depuis le 19ème siècle que tout module singulier est un entier algébrique. En 2011 Masser a posé la question suivante: est-il vrai qu'il n'existe qu'un nombre fini de modules singuliers qui sont des unités (éléments inversibles dans l'anneau de tous les entiers algébriques); appelez les "unités singulières". Habegger (2015) a répondu positivement: il n'existe qu'un nombre fini d'unités singulières. Cependant, son argument était non-effectif (dépendant du zéro de Siegel, via le théorème d'équipartition de Duke), et n'a fourni aucune majoration explicite pour la taille de ces unités singulières. Je parlerai du travail récent, commun avec Philipp Habegger et Lars Kühne, où nous démontrons que les unités singulières n'existent pas du tout. Premièrement, nous montrons que la valeur absolue du discriminant d'une unité singulière est bornée par 10^15. Ensuite, nous utilisons des arguments assistés par ordinateur pour exclure des unités singulières avec les discriminants inférieurs à cette borne.