Salle 2
le 19 octobre 2018 à 10:45
Depuis les travaux de van der Waerden, on sait quantifier le fait qu'un polynôme unitaire de degré fixé r à coefficients entiers et dont les coefficients sont, en valeur absolue, bornés par N est "génériquement" irréductible et de groupe de Galois maximal sur Q lorsque N tend vers l'infini. L'exposé, qui traite d'un travail commun avec E. Kowalski et D. Zywina, a pour but d'expliquer comment approcher l'analogue de cette question lorsque l'on se restreint aux polynômes caractéristiques de matrices "choisies au hasard" (disons comme k-ème étape d'une marche aléatoire définie via un système générateur, avec k tendant vers l'infini) dans certains groupes arithmétiques.