Estimations de la résolvante et zones sans résonances pour des opérateurs de Schrödinger semi-classiques à potentiels matriciels.
Salle de Conférences
le 20 novembre 2018 à 11:30
Pour des opérateurs de Schrödinger semi-classiques scalaires à longue portée, un résultat classique de Burq assure que sans aucune hypothèse sur la dynamique classique, la norme de la résolvante croit exponentiellement en l'inverse du paramètre semi-classique, et croit linéairement au voisinage de l'infini. Ceci implique en particulier l'absence des résonances exponentiellement proche de l'axe réel. Dans cet exposé je présenterai une généralisation de ces résultats pour des opérateurs de Schrödinger à potentiels matriciels sans aucune hypothèse sur le croisement des valeurs propres. Je mettrai l'accent en particulier sur l'approche élémentaire introduite par Datchev basée sur une inégalité de Carleman globale.