Salle 2
le 11 janvier 2019 à 10:45
In real analytic geometry semianalytic and subanalytic sets are studied. Globally subanalytic sets and functions exhibit particular tame geometric behaviour. We establish a Lebesgue measure and integration theory in non-archimedean globally subanalytic geometry. To be more precise, we work in a model of the theory of the real field with restricted analytic functions such that its value group has finite archimedean rank. An example is given by the field of Puiseux series over the reals. We show how one can extend the restricted logarithm to a global logarithm with values in the polynomial ring over the model with dimension the archimedean rank. The logarithms are determined by algebraic data from the model, namely by a section of the model and by an embedding of the value group into its Hahn group. We illustrate how one can embed such a logarithm into a model of the real field with restricted analytic functions and exponentiation. This allows us, using model theoretic arguments, to establish a full Lebesgue measure and integration theory with values in the polynomial ring.