[Séminaire CSM] Consistent section-averaged shallow water equations with bottom friction
Salle 2
le 28 février 2019 à 14:00
In this work, we present a general framework to construct section-averaged models when the flow is constrained – e.g. by topography – to be almost one-dimensional (1D). These models are consistent with the two-dimensional (2D) shallow water equations. By introducing relevant scaling parameters, we consider the quasi-1D regime of the 2D shallow water equations. Then, this 2D system is averaged over the width of the channel. Afterwards, we expand the water elevation and velocity field in the spirit of the diffusive wave equations, and we establish a set of one-dimensional equations, close to the ones usually used in hydraulic engineering. Out of these configurations, there is an O(1) deviation of our model from the classical models found in the literature. We prove that the 1D model thus derived is consistent with the 2D shallow water equations in the quasi-1D regime. Finally, we present the main mathematical properties of our model and carry out numerical simulation as validation of our approach with comparison to the full two-dimensional shallow water equations. This is a joint work with Pascal Noble (IMT & INSA Toulouse) and Jean-Paul Vila (IMT & INSA Toulouse).