Retour Séminaire de Théorie des Nombres
Sur une conjecture algébrique de Sato-Tate
Victoria Cantoral Farfán
( ICTP ) Salle de Conférences
le 15 mars 2019 à 14:00
La conjecture de Sato-Tate, énoncée pour les courbes elliptiques sans multiplication complexe, prédit l'équidistribution de la trace de Frobenius par rapport à la mesure de Sato-Tate, donnée par le poussé en avant de la mesure de Haar sur SU(2). Nous aimerions travailler sur une question analogue pour les variétés abéliennes de dimension g > 1, appelée conjecture généralisée de Sato-Tate. En 1966, Serre présente pour la première fois des liens remarquables entre les conjectures de Mumford-Tate et de Sato-Tate et introduit la conjecture algébrique de Sato-Tate. L'objectif principal de ce séminaire est de présenter de nouveaux résultats allant dans le sens de la conjecture algébrique de Sato-Tate, en s'appuyant sur les travaux de Serre, Kedlaya et Banaszak.